Фанфлай схемы "тандем". Чертежи и описания самолёта "Quickie" Почему переднее горизонтальное оперение

Source unknown

В архиве размещено описание легкого одноместного самолета оригинальной схемы.
Самолет носит название "Quickie".

Архив представляет собой отсканированную рукопись со схемами в формате Adobe PDF.

Хотя на первый взгляд, этот самолет кажется уж чересчур необычным и может вызвать недоверие, все же, прочитайте следуюший текст.
Это - выдержка из книги В.П.Кондратьева "Самолеты строим сами". Как следует из его слов, самолет построенный по такой схеме обещает очень даже хорошие характеристики.

Достоинства «утки» хорошо известны. Вкратце они сводятся к следующему, в отличие от нормальной схемы, у статически устойчивой «утки» подъемная сила горизонтального балансирующе-го оперения суммируется с подъемной силой крыла. Поэтому при тех же несущих свойствах площадь крыла можно, грубо говоря, уменьшить на величину площади оперения, в результате чего уменьшаются размеры, масса и аэродинамическое сопротивление самолета, а его аэро-динамическое качество растет (рис 97). Еще более выгодным является тандем, который по способу балансировки принципиально не отлича-ется от «утки», но позволяет создать еще более компактную машину. По сути дела, в тандемной компоновке общая несущая площадь разбивается на два равных или приблизительно равных крыла, линейные размеры которых примерно в 1,4 раза меньше аналогичного крыла самолета нормальной схемы.

Отрицательные же свойства «утки» связаны, прежде всего, с влиянием переднего крыла на заднее. Переднее скашивает вниз и подторма-живает воздушный поток, обтекающий заднее крыло, его эффективность падает (рис 98). Оптимальное решение этой проблемы в том, чтобы разнести как можно дальше крылья по длине фюзеляжа и по высоте. Для того чтобы заднее крыло не попадало в вихревой след переднего при полете на больших углах атаки, переднее крыло поднимают выше заднего или опускают его как можно ниже. Так сделано, в частности, на тандеме «Квики». Несоблюдение этого условия приводит к продольной неустойчивости на больших углах атаки.

Следует учитывать и еще одно условие. При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется «подхват» и считается совершенно недопустимым. Способ борьбы с «подхватом» на «утке» найден давно: достаточно увеличить угол установки переднего крыла по отношению к заднему. Разница в углах установки должна составлять 2—3°, что гарантирует срыв потока в первую очередь на переднем крыле. Далее самолет автоматически опускает нос, переходит на мень-шие углы атаки и набирает скорость — таким образом, реализуется идея создания несваливаемого самолета, конечно, при соблюдении требуемой центровки.

..
Самолеты схемы тандем и их аэродинамические особенности :
Затенение заднего крыла передним при полете на больших углах атаки. 1 - малая интерференция в крейсерском полете на малых углах атаки; 2 - сильное затенение заднего крыла на больших углах самолета неудачной схемы, 3 - удачное расположение крыльев с малой интерференцией на больших углах атаки (m - коэффициент продольного момента отрицательный, наклон кривой xapaктepeн для устойчивого самолета, α - угол атаки)

Строительство тандемов носило эпизодический характер до тех пор. пока в 1978 г. все тог же неутомимый Рутан не продемонстрировал на слете конструкторов-любителей США в городе Ошкоше свой вызывающе «непонятный» тандем «Квики». Приступая к разработке этой машины, Рутан ставил задачу создания самолета с высокими летными характеристиками при двигателе минимально возможной мощности. Конечно, наилучшие результаты можно было по-лучить, используя тандемную схему. Действительно, два крыла площадью примерно по 2,5 м^2 позволили сделать самолет минимальных габаритных размеров с наименьшим аэродинамиче-ским сопротивлением и высоким аэродинамиче-ским качеством. При этом двигателя в 18 л. с. хватило для достижения скорости 220 км/ч, скороподъемности 3 м/с, потолка 4600 м. Взлетная масса самолета, изготовленного целиком из пластика, составляет 230 кг. Как и предыдущие творения Рутана, «Квики» был размножен любителями разных стран в десятках экземпляров. Американские авиационные специалисты считают «Квики» «минимальным» самолетом. Он экономичен, дешев и нетрудоемок в постройке. Производственный цикл его изготовления составляет всего 400 человеко-часов. Конструкторы-любители многих стран могут приобрести и чертежи, и набор заготовок, и полностью гото-вый аппарат.

Последователи Рутана нашлись и в нашей стране. На СЛА-84 куйбышевский самодеятельный клуб «Аэропракт», возглавляемый студентом Ю. Яковлевым, представил свой вариант «Квики» —А-8

Хороших самодеятельных клубов в нашей стране уже немало. Куйбышевский — один из самых известных. «Авиация на практике» — так члены клуба расшифровывают название своей «фирмы», созданной в 1974 г. в красном уголке заводского общежития выпускником Харьковского авиационного института Василием Мирошником. Судьба «Аэропракта» складывалась труд-но. Клуб неоднократно закрывался, «разгонялся», менял адреса и руководителей. Однако неудачи и трудности только закаляли молодых энтузи-астов.

За более чем пятнадцатилетнюю историю через «Аэропракт» прошли десятки человек — школьников, студентов, молодых рабочих, ставших впоследствии хорошими инженерами, конструкторами, летчиками. В традициях «Аэропракта» полная свобода технической мысли и демократия. В клубе всегда существовало не-сколько небольших творческих групп, параллельно строивших три-четыре летательных аппарата. А для самых смелых и «бредовых» технических идей всегда существовал лишь один судья — практика и собственный опыт. Именно такая атмосфера творческого сотрудничества н сорев-нования стала постоянным источником энтузи-азма, благодаря которому «Аэропракт» до сих пор существует. Именно такие условия дали возможность наиболее полно проявить талант наших лучших конструкторов-любителей, в том числе Василия Мирошника, Петра Альмурзнна, Михаила Волынца, Игоря Вахрушева, Юрия Яковлева и многих других — постоянных участ-ников и призеров слетов СЛА.

Самолеты, созданные в «Аэропракте», хорошо известны. Для того чтобы лучше представить масштабы деятельности «Аэропракта», достаточ-но лишь напомнить названия аппаратов этого клуба, принимавших участие в слетах СЛА. Сре-ди них — самолеты А-6, А-11М, А-12, гидросамолет А-05, планеры А-7, А-10Б и мотопланер А-10А, имеющие «фирменное» обозначение «А» и построенные в «филиале» «Аэропракта» — СКБ Куйбышевского авиационного института под руководством В. Мирошника. Почти все пере-численные летательные аппараты были призерами слетов.

Наибольший успех выпал на долю тандема А-8 («Аэропракт-8»), построенного студентом Куйбышевского авиационного института Юрием Яковлевым.

Внешне А-8 напоминает «Квики». Но надо отметить, что до тандема Ю. Яковлева у нас в стране об особенностях этой схемы было известно очень мало. Каким должно быть взаимное расположение крыльев и их профиль, где расположить центр тяжести самолета, как поведет себя машина при полете на больших углах атаки? На все эти вопросы можно было ответить, лишь испытав аппарат.

..
Самолет-тандем А-8 (Ю. Яковлев, "Аэропракт"). Площадь переднего крыла - 2,47 м2, площадь заднего крыла - 2,44 м^2, взлетная масса - 223 кг, масса пустого - 143 кг, максимальное аэродинамическое качество - 12, максимально допустимая скорость - 300 км/ч, максимальная эксплуатационная перегрузка - 6, разбег - 150 м, пробег - 150 м.
1 - двигатель, 2 - педали, 3 - воздухозаборник вентилятора кабины, 4 - узлы навески крыльев, 5 - тяги управления элеронами, 6 - элерон, 7 - тяги управления рулем направления и хвостовым колесом (трос в трубчатой оболочке), 8 - вал управления, 9 - парашют ПЛП-60, 10 - рычаг управления двигателем, 11 - бензобак, 12 - тяги управления рулем высоты, 13 - рукоятка запуска двигателя, 14 - резиновые амортизаторы подвески двигателя, 15 - руль высоты, 16 - боковая ручка управления, 17 - замок фонаря, 18 - выключатель зажигания, 19 - указатель скорости, 20 - высотомер, 21 - авиагоризонт, 22 - вариометр. 23 - акселерометр, 14 - вольтметр

А-8 построен был очень быстро, но летать стал не сразу. Попытка первого взлета на СЛА-84 в Коктебеле завершилась неудачей: после короткого разбега самолет скапотировал. Пришлось существенно сдвинуть назад центровку и изменить углы установки крыльев. Только после этих доработок зимой 1985 г. самолет смог подняться в воздух, демонстрируя все преимущества необычной аэродинамической компоновки. Компактность, малая смачиваемая поверхность и, как следствие, низкое аэродинамическое сопротивление, присущие самолетам такой аэродинамической схемы, позволили на А-8, оснащенном мотором мощностью 35 л. с, добиться максимальной скорости 220 км/ч и скороподъемности 5 м/с. Испытания, проведенные летчиком-испытателем В. Макагоновым, показали, что самолет легок и прост в; управлении, обладает хорошей маневренностью и не срывается в штопор. На тандеме успешно летали его создатели и профессиональные пилоты. Для читателей будет представлять интерес оценка, данная самолету В. Макагоновым:

— При выполнении пробежек на СЛА-84 у А-8 обнаружилась несбалансированность в продольном канале управления, вследствие которой на разбеге развивался значительный пикирующий момент от заднего крыла на скорости, меньшей скорости отрыва. Этот момент невозможно было компенсировать рулем высоты. Пос-ле слета задачу сбалансированного взлета аэропрактовцы решили путем уменьшения угла установки заднего крыла до 0°. Этого оказалось достаточно, чтобы на разбеге при полностью взятой на себя ручке управления скорость подъема хвостового колеса до взлетного положения и скорость отрыва практически совпадали. После отрыва самолет легко балансируется в продольном канале. Тенденции к развороту и кренеиию отсутствуют. Максимальная скороподъемность — 5 м/с получена на скорости 90 км/ч. В горизонтальном полете достигнута максимальная скорость 190 км/ч. Самолет охотно увеличивает скорость до 220 км/ч при незначи-тельном снижении и при выходе в горизонтальный полет долго удерживает ее. Очевидно, при более удачном подборе воздушного винта фиксированного шага скорость может быть и большей. Во всем диапазоне скоростей самолет устойчив и хорошо управляем, перекрестные связи в боко-вой динамике проявляются четко. При полностью выбранной на себя ручке управления и работе двигателя на малом газе на скорости 80 км/ч наблюдается срыв потока на переднем крыле, самолет немного опускает нос с последующим восстановлением обтекания и увеличением тангажа. Процесс повторяется в автоколебательном режиме с частотой 2—3 колебания в секунду с амплитудой 5—10°. Срыв нерезкий, поэтому динамика имеет плавный характер. Тенденций к кренению и развороту при срыве не наблю-дается. Зависимость усилий на ручке и педалях от их хода линейна с максимальными значениями усилий по элеронам и рулю, высоты не более 3 кг и по рулю направления не более 7—8 кг. На самолете применена боковая ручка управления, поэтому расходы ручки невелики. Самолет продемонстрировал хорошую маневренность. На скорости 160 км/ч вираж выполняется с креном 60°, а форсированный вираж со ско-рости 210 км/ч с креном 80°. Кистевое управление, кресло эргономической выгодной формы и отличный с точки зрения обзора фонарь создают достаточно комфортные условия полета.

Накануне СЛА-85 «Аэропракт» в очередной раз закрыли, и все летательные аппараты оказались в опечатанном помещении. Юрию Яковлеву и его друзьям пришлось приложить немало усилий, прежде чем А-8 и другие самолеты клуба были доставлены в Киев. Попав на слет с небольшим опозданием, А-8 сразу же привлек к себе внимание и зрителей, и специалистов, а великолепные полеты В. Макагонова во многом способствовали тому, что тандем стал одним из самых популярных самолетов слета. При подве-дении итогов А-8 признан лучшим эксперимен-тальным самолетом. Его автор был удостоен призов ЦК ВЛКСМ, журнала «Техника — молодежи» и ЦАГИ. По рекомендации технической комиссии слета решением Минавиапрома А-8 передан в ЦАГИ для продувок в аэродинами-ческой трубе, а затем в Летно-испытательный институт для более детальных исследований в полете. Главным же призом для Юрия Яковлева, конечно, стало приглашение работать в ОКБ имени О. К. Антонова.

А-8 изготовлен целиком нз пластиков. Перед-нее и заднее однолонжеронные крылья имеют примерно одинаковую конструкцию. Крылья сде-ланы отъемными, но разъемов по размаху не имеют. При стыковке крылья вкладываются в специальные вырезы фюзеляжа. Переднее крыло снабжено аэродинамическим профилем RAF-32 н установлено под углом +3°, заднее с профилем «Вортман» FX-60-126 установлено с углом 0°.

Лонжероны крыльев имеют стенку, изготовлен-ную из стеклоткани, и полки, выложенные из углеволокна. Обшивка крыльев трехслойная {стеклоткань — пенопласт — стеклоткань). При выклейке деталей и сборке агрегатов планера А-8 использованы различные эпоксидные клеи, в основном К-153.

Фюзеляж типа полумонокок также имеет трех-слойную пластиковую конструкцию. Он выклеен зацело с килем. Шассн состоит из двух колес от карта размером 300х100 мм, установленных в специальных обтекателях на концах переднего крыла, и стеклопластнкового рессорного костыля с управляемым хвостовым колесом размером 140х60 мм. Главные колеса снабжены механи-ческими тормозами. Роль амортизатора шасси выполняет само довольно упругое переднее крыло. В систему управления самолета входят: закрылок на переднем крыле, выполняющий функции руля высоты, элероны на заднем крыле и руль направления. Привод управления элеро-нами и рулем высоты выведен на боковую ручку с малыми ходами, при этом ручка летчика в по-лете лежит на специальном подлокотнике. Таким образом практически реализован принцип кисте-вого управления. Боковая ручка управления А-8 на слете получила высокую оценку всех пилотов.

На А-8 использован двигатель РМЗ-640 от снегохода «Буран». Мотор развивает мощность 35 л. с. при 5000 об/мин. Воздушный винт имеет диаметр 1,1 м и шаг 0,7 м. Максимальная стати-ческая тяга винта — 65 кг. Бензобак расположен в носовой части фюзеляжа под ногами пилота. Мотор рассчитан на использование бензина А-76.

Единственный вопрос меня больше всего беспокоит после прочитанного:
Какова была дальнейшая судьба самолета А-8?
Куда же исчез самолет А-8 из ассортимента производства на нынешнем "Аэропракте"?

Идеи наших читателей

ЮАН-2 «Sky Dweller> на авиасалоне МАКС-2007

ЯпЬтсрнатиЗнар

На МАКС-2009 этого самолёта ещё не будет -конструкция совершенствуется, и следующая её версия создаётся в значительной мере из деталей и узлов предыдущей. А вот на прошлом МАКСе сверхлёгкий ЮАН-2 вызвал большой интерес, несмотря даже на подпорченный многочисленными испытаниями внешний вид. Потому что это не просто ещё один СЛА. В самолёте реализована аэродинамическая схема - так называемая «флюгерная утка», - которую без натяжки можно назвать революционной. В этой статье автор идеи и руководитель строительства опытных машин, молодой авиаконструктор Алексей Юрконенко, обосновывает преимущества новой схемы. По его мнению, она идеальна для неманёвренных самолётов, и в этой категории - весьма, кстати сказать, обширной ~ может стать основой нового направления в развитии мирового самолётостроения.

Применение современных технологий проектирования самолётов привело к результату, на первый взгляд, парадоксальному: процесс улучшения характеристик авиационной техники «потерял темп». Найдены новые аэродинамические профили, оптимизирована механизация крыла, сформулированы принципы построения рациональных структур авиационных конст

рукций, улучшена газодинамика двигателей... Что же дальше, неужели развитие самолёта пришло к своему логическому завершению?

Что ж, эволюция самолёта в рамках нормальной, или классической, аэродинамической схемы действительно замедляется, На авиационных выставках и салонах массовый зритель находит огромное и пёстрое многообразие; опыт

ный же специалист видит принципиально одинаковые самолёты, отличающиеся лишь по эксплуатацией но-тех-пологическим признакам, но имеющие общие концептуальные недостатки,

«КЛАССИКА»: ПЛЮСЫ И МИНУСЫ

Напомним, что пол термином «аэродинамическая схема самолёта* подразумевается способ обеспечения статической устойчивости и управляемости самолёта в канале тангажа 1 .

Главное и, пожалуй, единственное положительное свойство классической аэродинамической схемы заключается в том, что расположенное за крылом горизонтальное оперение (ГО) позволяет без особых трудностей обеспечить продольную статическую устойчивость на больших углах атаки самолёта".

Основным недостатком классической аэродинамической схемы является наличие так называемых потерь на балансировку, которые возникают из-за необходимости обеспечения запаса продольной статической устойчивости самолёта (рис. I). Таким образом, результирующая подъёмная сила самолёта оказывается меньше, чем подъёмная сила крыла, на величину отрицательной подъёмной силы ГО.

Максимальное значение потерь на балансировку имеет место на взлётно-посадочных режимах при выпущенной механизации крыла, когда подъёмная сила крыла и, следовательно, пикирующий момент, ею обусловленный (см. рис. 1), имеют максимальное значение. Существуют, например, пассажирские самолёты, у которых при полностью выпущенной механизации отрицательная подъёмная сила ГО равна 25% их веса. Значит, примерно на ту же величину переразмерено крыло, и все экономические и эксплуатационные показатели такого летательного аппарата, мягко говоря, далеки от оптимальных значений.

АЭРОДИНАМИЧЕСКАЯ СХЕМА «УТКА»

Как избежать этих потерь? Ответ прост: аэродинамическая компоновка статически устойчивою самолёта должна исключать балансировку с отрицательной подъёмной силой на горизон-

" Тангаж - угловое движение летательного аппарата относительно поперечной оси инерции. Угол тангажа - угол между продольной осью летательного аппарата и горизонтальной гласностью.

1 Угол атаки самолёта - угол между направлением скорости набегающего потока и продольной cmpoume.tbHuu осью самолёта.

Я отношусь к той категории моделистов, которым интересно самим сконструировать и построить самолет, а потом получать удовольствие от управления им. Но главное удовольствие - от результата творческого поиска.

Отлетав несколько сезонов на самодельном Diamant-е с OS MAX 50, стало немного скучно. Было понятно, что может самолет, и что могу я. Конечно, можно было заняться оттачиванием навыков 3D пилотажа, но душа просила чего-то необычного. Хотелось построить самолет, которого нет ни у кого, и который обладал бы уникальными, присущими только ему, пилотажными возможностями.

Попытка 1

Посмотрел, как летают радио бойцовки, появилась идея построить фанфлай типа "летающее крыло". Сказано-сделано. Начерчен чертеж, проработана компоновка, и вот самолет готов.

  • Размах: 1450 мм
  • Длинна: 1000 мм
  • Вес: 2000 г
  • Двигатель: OS MAX 50

Выезжаю на поле и понимаю, что ничего интересного я не построил. Да, летит, да, крутит какие-то фигуры. Но ничего интересного, все как обычно, даже немного скучно.

Проанализировав ситуацию, понимаю, что так и должно было быть… Классическая схема и схема "летающее крыло" отработаны до мелочей, и ничего нового предложить не могут. Начался творческий застой…

Находясь в кризисе, листаю старые журналы и натыкаюсь на модель схемы "Утка". Это уже становится интересно.

Идея

Схема утка обладает одной интересной особенностью. Рулевые поверхности расположены перед и за центром тяжести. Соответственно если смикшировать руль высоты с элеронами и сделать это как на кордовой пилотажке, то разворачивающий момент от рулей высоты будет приложен спереди и сзади центра тяжести. Это в свою очередь позволит выполнять петли очень малого радиуса. Также было известно из большой авиации то, что эта схема очень стабильно ведет себя на срывных режимах. Вот только толкающий винт расположенный сзади не способствовал выполнению 3D пилотажа.

Вывод напрашивался сам собой, двигатель надо поставить спереди, но тогда возникали проблемы с центровкой. Так как основное крыло расположено сзади (в отличие от классической схемы, где стабилизатор не несет вес самолета, у схемы утка он создает подъемную силу), а центр тяжести находится в пределах 10-20% САХ, сбалансировать эту конструкцию не было возможности. Опять тупик.… Листая дальше журналы, нахожу старый номер "Крылья Родины", в котором рассказывается о самолетах особых схем, и в их числе приведена схема "Тандем". А самое интересное в том, что там даны формулы расчета положения центра тяжести. Выдержку из этой статьи я и привожу.

Выдержка из статьи в журнале "Крылья родины" за февраль 1989 года.

При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется "подхватом" и считается совершенно недопустимым. Способ борьбы с "подхватом" на "утке" и "тандеме" найден давно: необходимо увеличить угол установки переднего крыла по отношению к заднему, причем разница в углах установки должна составлять 2-3 градуса.

Правильно спроектированный самолет автоматически опускает нос, переходит на меньшие углы атаки и набирает скорость, тем самым реализуется идея создания несваливаемого самолета. У "стандартной утки" (площадь горизонтального оперения 15-20% от площади крыла и плечом оперения, равным 2.5-3 САХ) центр тяжести должен располагаться в пределах от 10 до 20% САХ. У тандема центровка должна быть в пределах 15-20% В экв (хорды эквивалентного крыла) смотри рисунок. Хорда эквивалентного крыла определяется следующим образом:

В экв = (S п +S з)/(l п 2 +l з 2) 1/2

При этом расстояние до носика эквивалентной хорды равняется:

Х экв = L/(1+S п /S з *К)-(S п +S з)/(4*(l п 2 +l з 2) 1/2)

Где К – коэффициент, учитывающий разность углов установки крыльев, скосы и торможение потока за передним крылом, равняется:

К = (1+0,07*Q)/((0.9+0.2*(H/L))*(1-0.02*(S п /S з)))

В приведенных формулах:

  • S п - площадь переднего крыла.
  • S з - площадь заднего крыла.
  • L - аэродинамическое плечо тандема.
  • l п - размах переднего крыла.
  • l з - размах заднего крыла.
  • Q - превышение угла установки переднего крыла над задним.
  • H - расстояние по высоте между осью переднего и заднего крыльев.

Окончательный вариант

Теперь общая идея сформировалась. Двигатель ставим спереди, крылья делаем одинаковыми, а приемник и аккумулятор сдвигаем в хвост самолета.

Привод элеронов на переднем и заднем крыльях раздельный. Всего используется 6 рулевых машинок.

Сразу строить самолет под 50-ый мотор было страшно. Оставался непонятным целый круг вопросов: на каком крыле делать элероны, а на каком руль высоты или на том и другом; какие углы атаки должны быть у крыльев; насколько крылья должны быть разнесены друг от друга; и, вообще, будет ли это летать?

Но творческий зуд захватил разум, и все сомнения были отброшены. Строю "Тандем" под 25-ый мотор. На нем и проверю, как это летит…

Попытка 2

Модель прорисована, начерчена и построена. Получилось следующее.

  • Размах обоих крыльев: 1000 мм
  • Длинна: 1150 мм
  • Хорда крыла с элероном: 220 мм
  • Расстояние между крыльями: 200 мм

Переднее крыло ставилось ниже оси двигателя на 20 мм, заднее выше на 20 мм. Крылья были абсолютно одинаковыми и взаимно заменяемыми, только на одном крыле были сделаны элероны, а на другом руль высоты.

Полет

Первый полет только добавил уверенности в правильности направления поиска. Модель была абсолютно предсказуема и адекватна в воздухе, стабильна на малых скоростях и самопроизвольно не валилась в штопор. Схема с рулем высоты на переднем крыле показала себя с лучшей стороны по отношению к схеме, когда руль высоты находился на заднем крыле. Это обусловлено тем, что на малых скоростях он выполнял роль закрылков, увеличивая подъемную силу на переднем крыле.

Решено! Изучаю поведение этой модели в воздухе и начинаю строить модель под 61 мотор. Пока строится большой самолет, летаем на маленьком. В процессе полетов находим еще одну интересную особенность модели. Она могла остановиться и стоять в воздухе против ветра. При перетягивании ручки на себя на малом газу она проявляла склонность к парашютированию.

Получилось следующее:

  • Размах: 1400 мм
  • Длинна: 1570 мм
  • Хорда с элероном: 300 мм
  • Расстояние между крыльев: 275 мм

Первый полет осуществляю с элеронами на заднем крыле и рулем высоты спереди.

Впечатления:

Устойчив, стабилен на всех скоростях, весьма предсказуем. Однако в полете большой модели открылась одна особенность. Самолет очень чутко реагирует на руль высоты. То есть, вывел его в горизонтальный полет, оттримировал на среднем газу - летит ровно и устойчиво, но стоит тронуть ручку высоты, и он резко, но на небольшой угол, меняет направление полета. Не то чтобы это напрягало или было опасно, просто надо учесть, что модель очень чутко реагирует на руль высоты.

Для учебного самолета это конечно неприемлемо, но ведь у нас FAN рассчитанный на продвинутого пилота.

Теперь пробую смикшировать руль высоты и элероны. То есть, когда тяну ручку на себя на переднем крыле, оба элерона идут вниз, а на заднем вверх. А вот, когда даю крен, элероны работают параллельно на обоих крыльях.

Неустойчивое поведение модели в горизонтальном полете, скорее всего, было связано с неправильными углами установки крыльев. К сожалению, изменить их без существенной переделки не было возможности.

Модель окончательно настроена, пробую, что она может в воздухе.

  1. Убираю газ. Тяну ручку на себя (зажатые расходы). Модель сбавляет скорость почти до остановки, потом плавно клюет носом, разгоняется и повторяет то же самое. Никакой тенденции к штопору. То есть, если специально не срывать поток с крыла, то срыв происходит очень плавно и тут же с набором скорости восстанавливается.
  2. Убираю газ. Тяну ручку на себя (полные расходы). Модель останавливается в воздухе и, сохраняя горизонтальное положение, начинает, как парашют опускаться вниз. Фигура "парашют". Даю ручку от себя – она переворачивается на спину и продолжает свой спуск вертикально вниз (просто чума какая-то). Фигура "перевертыш". То есть модель способна управляться рулями в режиме 100% срыва потока с несущих плоскостей!
  3. Расходы на максимум – кручу петлю. Правда, петлей это нельзя назвать. Скорее это классический "водопад" из 3D комплекса. Модель крутится вокруг фонаря, при этом медленно снижаясь. Причем работать газом не требуется. И очень легко меняется направление вращения при перекладке рулей. Фигура "шейкер".
  4. Делаю "парашют" и отклоняю руль поворота. Получаю очень медленный плоский штопор - фигура "сухой лист".
  5. Такая фигура как "хариер" переходит в разряд детских.
  6. "Квадратная петля" получается именно квадратной, поскольку радиусы поворота на углах почти не читаются.

Описывать фигуры можно еще очень долго. Скажу только одно. Этот самолет может больше, чем я, и способен научить продвинутого пилота еще нескольким новым фигурам недоступным на обычной технике. И особенно хочется отметить прогнозируемость и стабильность самолета, что бы вы с ним не вытворяли.

Кажется, я получил то, что ХОТЕЛ!

Попытка 4

Хоть второй и третий самолеты показали отличные летные данные, но остался еще один очень важный вопрос: какие оптимальные углы атаки у крыльев? Для решения этой задачи было решено построить модель под 50-ый мотор, с возможностью изменять угол атаки крыльев на земле. К тому же, модель №3 была разбита из-за отказа аппаратуры.

Также было решено поставить переднее крыло выше оси двигателя, а заднее ниже (на предыдущей модели было наоборот, просто хотелось проверить - скажу сразу, каких либо изменений в поведении модели я не заметил.) и сделать небольшой скос по передней кромке, переднее крыло получило неявно выраженное положительное "V", а заднее отрицательное "V". Это должно было придать стабильности на малых скоростях в прямом и обратном пилотаже соответственно.

Подробно останавливаться на описании конструкции и процессе изготовления не буду. Она ничем не отличается от обычного Фанфлая и понятна из фотографий.

Как избежать потерь на балансировку? Ответ прост: аэродинамическая компоновка статически устойчивого самолёта должна исключать балансировку с отрицательной подъёмной силой на горизонтальном оперении. В принципе, добиться этого можно и на классической схеме, но наиболее простым решением является компоновка самолёта по схеме «утка», которая обеспечивает управление по тангажу без потерь подъемной силы на балансировку (рис. 3). Тем не менее, «утки» практически не используются в транспортной авиации, и, кстати, совершенно справедливо. Объясним, почему.

Как показывает теория и практика, самолёты схемы «утка» имеют один серьёзный недостаток – малый диапазон лётных скоростей. Схема «утка» выбирается для самолёта, который должен иметь более высокую скорость полёта по сравнению с самолётом, скомпонованным по классической схеме, при условии, что мощности силовых установок этих самолётов равны. Данный эффект достигается за счёт того, что на «утке» удаётся до предела снизить сопротивление трения воздуха за счёт уменьшения площади омываемой поверхности самолёта.

С другой стороны, на посадке «утка» не реализует максимальный коэффициент подъёмной силы своего крыла. Это объясняется тем, что по сравнению с классической аэродинамической схемой при одинаковых межфокусных расстояниях крыла и ГО, относительной площади ГО, а также при равных абсолютных значениях запасов продольной статической устойчивости, схема «утка» имеет меньшее балансировочное плечо ПГО. Именно это обстоятельство не позволяет «утке» конкурировать с классической аэродинамической схемой на взлётно-посадочных режимах.

Решить эту проблему можно одним способом: увеличить максимальный коэффициент подъёмной силы ПГО () до значений, обеспечивающих балансировку «утки» на посадочных скоростях классических самолётов. Современная аэродинамика уже дала «уткам» высоконесущие профили со значениями Су max = 2, что позволило создать ПГО с . Но, несмотря на это, все современные «утки» имеют более высокие посадочные скорости по сравнению с классическими компоновками.

Срывные характеристики «уток» также не выдерживают критики. При заходе на посадку в условиях высокой термической активности, турбулентности или сдвига ветра ПГО, обеспечивающее балансировку на максимальном допустимом Су самолёта, может иметь . В этих условиях, при внезапном увеличении угла атаки самолёта, ПГО выйдет на закритическое обтекание, что приведёт к падению его подъёмной силы, и угол атаки самолёта начнёт уменьшаться. Возникающий при этом глубокий срыв потока с ПГО вводит самолёт в режим резкого неуправляемого клевка, что в большинстве случаев приводит к катастрофе. Такое поведение «уток» на критических углах атаки не позволяет использовать эту аэродинамическую схему в сверхлёгкой и транспортной авиации.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО). Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.

Изобретение относится к самолетам с передним горизонтальным оперением, преимущественно к сверхлегким, спортивным.

Известен самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение .

У самолета схемы «утка» загруженность переднего горизонтального оперения (ПГО) на единицу площади существенно меньше, чем у крыла. Такое положение является следствием того, что отношение расстояния между планами ПГО к среднему арифметическому величин хорд этих планов составляет всего 0,7. Поскольку несущая площадь ПГО используется неэффективно, требуется увеличение размеров площади крыла и переднего горизонтального оперения, что увеличивает размеры самолета.

Технической задачей, решаемой настоящим изобретением, является уменьшение размеров самолета.

Поставленная задача решается за счет того, что согласно изобретению в самолете схемы «утка», включающем крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Такое выполнение конструкции самолета позволяет уменьшить его размеры.

Изобретение поясняется конкретным примером его выполнения и прилагаемым чертежом.

На фиг. 1 изображено сечение бипланного переднего горизонтального оперения самолета схемы «утка» по плоскости, параллельной базовой плоскости самолета, выполненного согласно изобретению.

Устройство «Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение, состоящее из нижнего плана и верхнего плана. При этом удельная нагрузка ПГО равна удельной нагрузке крыла и составляет, например, 550 ньютонов на 2.2 квадратный метр. То есть имеется равномерная загруженность крыла и ПГО на единицу площади.

На фиг. 1 величина хорды нижнего плана 1 ПГО обозначена литерой bн, а величина хорды верхнего плана 2 - литерой bв. Расстояние между верхним 2 и нижним 1 планами обозначено буквой h.

Хорда bн нижнего плана 1 равна хорде bв верхнего плана 2 и составляет, например, 300 мм. Расстояние h между планами 1 и 2 равно, например, 360 мм. При этом отношение расстояния h к среднему арифметическому величин хорд планов составляет 1,2.

Величина указанного отношения обеспечивает равномерную загруженность крыла и ПГО для сверхлегких спортивных самолетов. Это следует из следующих обстоятельств.

Уменьшение величины h приводит с одной стороны к смещению назад фокуса самолета, что положительно до тех пор, пока загруженность ПГО не сравняется с загруженностью крыла. С другой стороны уменьшение величины h сопровождается увеличением индуктивного сопротивления ПГО, что, безусловно, отрицательно. В связи с этим, явным образом невозможно определить, какую именно величину расстояния между планами ПГО следует выбирать. При этом надо иметь в виду, что с точки зрения уменьшения суммарной площади крыла и ПГО и, следовательно, размеров самолета должно выполняться условие равномерной загруженности крыла и ПГО на единицу площади.

При одинаковой, или почти одинаковой загруженности крыла и ПГО выполняется условие превышения на три градуса критического угла атаки крыла над критическим углом атаки ПГО в их посадочной конфигурации. Это условие является обязательным для предотвращения «клевка» - резкого опускания носа самолета из-за срыва потока на ПГО. При этом незначительная разница загруженности возможна как в пользу ПГО, так и крыла.

Величина вышеприведенного соотношения выявлена посредством аналитических исследований и проверки их результатов посредством летных испытаний модели самолета, на которой имелась возможность изменять расстояние между планами ПГО.

ИСТОЧНИКИ ИНФОРМАЦИИ

Самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), отличающийся тем, что в нем имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Похожие патенты:

Изобретение относится к области авиации, в частности к конструкциям высокоскоростных летательных аппаратов. Летательный аппарат содержит фюзеляж с кабиной управления, треугольной формы крыло, двигатели, установленные с возвышением над крылом, хвостовое оперение, шасси.

Изобретение относится к авиации, более конкретно - к аппаратам тяжелее воздуха, а именно к самолетам схемы “утка”, и может быть использовано в конструкции пассажирских, транспортных самолетов для повышения их экономичности и топливной эффективности.

Изобретение относится к области летательных аппаратов. Носовая часть летательного аппарата содержит кабину управления с вытянутой вперед головкой в форме конуса, снабженной поворотной на вертикальной оси деталью в виде клина, конец которой выполнен острым по направлению к набегающему потоку воздуха, имеет возможность отклонения влево и вправо на угол от 0о до 10о с помощью поворотного гидродвигателя/пневмодвигателя и совершения колебательных движений, приводящих к синусоидального вида траектории полета летательного аппарата. Изобретение направлено на повышение маневренности летательного аппарата в горизонтальной плоскости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам легкомоторной авиации. Мотопланер содержит фюзеляж, двигатель, несущее крыло и вспомогательное крыло, рычаги приводов в управлении крыльев, руля поворота, колеса, руля высоты. Несущее крыло оснащено шарнирными узлами, из которых два расположены симметрично относительно поперечной оси симметрии на лонжероне. Один шарнирный узел расположен на вспомогательном лонжероне и закреплен на стойке, которая закреплена шарнирно на ползуне, подвижно установленном в направляющих рамы, и связан со стойкой штурвала подпружиненной тягой. Вспомогательное крыло состоит из двух независимых консолей, посаженных подвижно на поперечную ось, неподвижно закрепленную в носовой части рамы, оснащенных рычагами, связанными тягами с двуплечим рычагом штурвала. Стойка переднего колеса, подвижно закрепленная во втулке рамы, оснащена обтекателем колеса, выполненным в форме поворотного киля, и оснащена двуплечим рычагом, снабженным компенсаторами. Изобретение направлено на повышение безопасности полета. 1 з.п. ф-лы, 9 ил.

Группа изобретений относится к авиационно-космической технике и может быть использована для осуществления полетов в атмосфере и космическом пространстве, при взлёте с Земли и возвращении на неё. Аэрокосмический самолёт (АКС) выполнен по аэродинамической схеме «утка-бесхвостка». Носовые плоскости и крылья образуют совместно с фюзеляжем дельтообразную несущую поверхность. Ядерный ракетный двигатель (ЯРД) содержит теплообменную камеру, состыкованную с ядерным реактором через радиационную защиту. В качестве рабочего тела используется (частично) атмосфера, сжижаемая бортовыми установками ожижения. Питающие и охлаждающие бортовые турбоагрегаты и турбоэлектрогенераторы, а также управляющие реактивные двигатели подключены к теплообменной камере с возможностью работы непосредственно на маршевом рабочем теле. При отключенном маршевом сопле в ЯРД предусмотрено специальное запорное устройство. В долговременных аэрокосмических полетах АКС периодически дозаправляется сжижаемой атмосферной средой. Техническим результатом группы изобретений является повышение эффективности АКС с ЯРД за счет повышения их тяговооруженности и термодинамического качества при обеспечении устойчивости и управляемости полета. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой самолет с крыльями замкнутой конструкции (ССКЗК) имеет планер с передним горизонтальным оперением, два киля, низко расположенное переднее крыло, имеющее концевые крылышки, соединенные по дуге с концами высокорасположенного заднего крыла, корневые части которого соединены с концами отклоненных наружу килей, фюзеляж и турбореактивные двухконтурные двигатели (ТРДД). ССКЗК выполнен по аэродинамической схеме продольного триплана с разнонаправленными в поперечной плоскости стреловидными крыльями замкнутой конструкции. Передние и задние части гондол ТРДД смонтированы в изломах под внутренней частью заднего крыла и над внутренней частью стабилизатора переменной стреловидности U-образного оперения, имеющего на левой и правой консолях как внутренние рулевые поверхности, смонтированные с внутренних бортов соответствующих гондол, так и переднюю и заднюю кромки. Комбинированная силовая установка имеет разгонно-маршевые ТРДД и вспомогательный маршевый прямоточный воздушно-реактивный двигатель. Изобретение направлено на улучшение естественного ламинарного сверхзвукового обтекания системы крыльев. 4 з.п. ф-лы, 3 ил.

Изобретение относится к авиации. Сверхзвуковой самолет с тандемными крыльями имеет продольную компоновку триплана и содержит фюзеляж с плавным сопряжением наплывов дельтовидного в плане крыла (1), низкорасположенное заднее крыло (8) типа обратная “чайка”, переднее горизонтальное оперение (6), вертикальное оперение, выполненное совместно со стабилизатором (7), два турбореактивных двухконтурных двигателя, передние и задние части которых смонтированы соответственно под крылом типа чайка и по внешним их бортам с консолями стабилизатора и трехопорное шасси. Фюзеляж (3) снабжен конусообразным гасителем (4) звукового удара в носовом обтекателе (5). Крылья выполнены соответственно с отрицательным и положительным углами их поперечного V, имеют переменную стреловидность и образуют при виде спереди ромбовидную замкнутую конструкцию. Стабилизатор выполнен с обратной V-образности с округленной вершиной и оснащен гондолой (14) двигателя. Изобретение повышает аэродинамическую эффективность летательного аппарата. 6 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой конвертируемый самолет содержит планер, включающий переднее горизонтальное оперение, вертикальное оперение, переднее треугольное крыло типа чайка, заднее крыло с трапециевидными консолями, разгонно-маршевый реактивный двигатель и вспомогательные маршевые прямоточные воздушно-реактивные двигатели. Переднее крыло и заднее крыло размещены в замкнутой конструкции продольного триплана с возможностью преобразования полетной конфигурации. Изобретение направлено на повышение бесшумности полета путем улучшения ламинарного сверхзвукового обтекания крыльев. 5 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам схем «утка» и «нормальная». Летательный аппарат (ЛА), включает механизированное крыло и флюгерное горизонтальное оперение (ФГО), с которым связан серворуль. ФГО (1) с серворулем (3) шарнирно размещены на оси вращения. Производная по углу атаки ЛА коэффициента подъемной силы ФГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФГО (1) и ЛА изменяется кратно изменению угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (4, 5, 6, 7, 8, 9, 10). В «утке» угол порота ФГО меньше угла поворота серворуля, а в нормальной схеме - больше. В результате в обеих схемах фокус смещается назад. В нормальной схеме это позволяет увеличить нагрузку на стабилизатор - ФГО, а в «утке» - использовать современные средства механизации крыла при сохранении статической устойчивости. Изобретение направлено на уменьшение площади крыла за счет оптимизации загруженности горизонтального оперения. 3 ил.

Изобретение относится к авиационной технике. Летательный аппарат (ЛА) аэродинамической схемы «флюгерная утка» содержит механизированное крыло и флюгерное переднее горизонтальное оперение (ФПГО) (10) с серворулем (3), которые шарнирно размещены на оси вращения ОО1. Производная по углу атаки ЛА коэффициента подъемной силы ФПГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФПГО (10) и ЛА изменяется лишь на часть изменения угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (11, 12, 13). Для управления по тангажу ось ОО3 имеет возможность смещаться к оси ОО1 или от нее, при этом ее положение зафиксировано тягой (14), являющейся элементом системы управления. Изобретение направлено на уменьшение площади крыла за счет уравнивания с ним крейсерской загруженности ФПГО. 3 з.п. ф-ы, 4 ил.

Изобретение относится к авиации. Сверхзвуковой преобразуемый самолет содержит фюзеляж (3), трапециевидное ПГО, стабилизатор (7), силовую установку, включающую два турбореактивных двухконтурных двигателя форсажных в гондолах, размещенных по обе стороны от оси симметрии и между килями (18), смонтированных на конце фюзеляжа (3) на верхних и боковых его частях. Самолет также содержит переднее крыло (1) с наплывом (2), выполненное с переменной стреловидностью типа «обратная чайка», снабженное предкрылками (8), заостренными законцовками (9), флапперонами (10). Сзади и ниже поверхностей первого крыла (1) на балках установлены цельноповоротные консоли заднего крыла (13), снабженные закрылками (14), с возможностью поворота в вертикальной поперечной плоскости вокруг продольной оси на поворотной средней части (15) балки. Также самолет содержит U-образное оперение, имеющее кили (18) с серповидной задней кромкой и цельноповоротными развитыми заостренными законцовками (19). Изобретение улучшает подъемную силу и управляемость и повышает аэродинамическую эффективность, а также уменьшает шум самолета. 3 з.п. ф-лы. 1 ил.

Изобретение относится к области авиации, в частности к конструкциям самолетов вертикального взлета и посадки (СВВП). СВВП выполнен по схеме "утка", снабжен дополнительным хвостовым рулем высоты, состоящим из закрепленных с возможностью поворота на оси вращения носовой части и хвостовой части с нижней и верхней поверхностями. Ширина хвостового руля высоты равна ширине фюзеляжа. Насадок каждого подъемно-маршевого вентилятора снабжен боковыми ограничителями потока воздуха от вентилятора. Поворотные профили решеток выполнены в виде сборных гибких лопаток, а выходное сечение насадка выполнено сложной формы с верхней и нижней горизонтальными гибкими кромками. Выхлопные сопла двигателей прилегают к верхней поверхности дополнительного хвостового руля высоты, по краям нижней поверхности фюзеляжа установлены продольные гребни. Достигается возможность получения дополнительной подъемной силы на взлете, посадке и переходных режимах полета. 5 з.п. ф-лы, 4 ил.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение. Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.