Продукты горения древесины. Энергия топлива. Удельная теплота сгорания Описание процессов горения

Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.
  • Кэфициент полезного действия котла.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %

На многих семинарах, особенно на тех, где в основном были новички в области пенополиуретанов, практически все задавали вопрос о горючести пенополиуретана и его вредности. И каждый раз нам приходилось людям объяснять, что при возгорании жилого дома или другого объекта, начинает гореть не утеплитель, который находиться в стенах или снаружи, а одежда, бумага, линолеум, краска, бытовая техника и тд. После долгих размышлений, я решил написать статью, какие продукты наиболее опасны при горении дома.

Начнем, я думаю с материалов, из которых состоит одежда, шторы, ковры и тд. В большинстве случаев растительные (натуральные) волокна , к которым относятся хлопок, джут, пенька, лен и сизаль, состоят главным образом из целлюлозы. Хлопок и другие волокна горючи (температура самовоспламенения волокон хлопка 400°С). Их горение сопровождается выделением дыма и теплоты, двуокиси углерода, окиси углерода и воды. Растительные волокна не плавятся.

Синтетические текстильные материалы - это ткани, изготовленные полностью или в основном из синтетических волокон. К ним относятся вискоза, ацетат, нейлон, полиэстер, акрил. Пожарную опасность, связанную с синтетическими волокнами, часто трудно оценить, так как некоторые из них при нагревании дают усадку, плавятся и стекают. Основные газы, образующиеся при горении, это двуокись углерода, окись углерода и водяной пар.

Растительные волокна , например джут, выделяют при горении большое количество едкого плотного дыма.

При горении шерсти появляется густой серовато-коричневый дым, а также при этом образуется цианистый водород, который является весьма токсичным газом. При обугливании шерсти получается липкое черное вещество, напоминающее деготь.

Продуктом сгорания шелка является пористый уголь, смешанный с золой, который продолжает тлеть или гореть только в условиях сильной тяги. Тление сопровождается выделением светло-серого дыма, вызывающего раздражение дыхательных путей. В определенных условиях при горении шелка может выделяться цианистый водород.

Далее перейдем к пластмассам и резинам . Горящие пластмассы и резины выделяют газы, теплоту, пламя и дым, при этом образуются продукты сгорания, воздействие которых может привести к интоксикации или смерти. При горении пластмасс, содержащих хлор, например поливинилхлорида, который является изоляционным материалом кабелей, основным продуктом сгорания является хлористый водород, имеющий едкий раздражающий запах. Вдыхание хлористого водорода может вызвать смерть.

Горящая резина выделяет плотный черный жирный дым, содержащий два токсичных газа - сероводород и двуокись серы. Оба газа опасны, так как в определенных условиях вдыхание их может привести к смерти.

Также дома у нас есть много изделий из дерева : паркет, столы, стулья, кухонные гарнитуры и тд. При горении древесины и древесных материалов образуется водяной пар, теплота, двуокись и окись углерода. Основную опасность для людей представляют недостаток кислорода и присутствие окиси углерода. Кроме того, при горении древесины образуются альдегиды, кислоты и различные газы. Эти вещества сами по себе или в сочетании с водяным паром могут, как минимум, оказывать сильное раздражающее воздействие.

В итоге после того как практически все сгорело мы дошли до утеплителя. Чем мы в основном утепляем дома? Как правило, 50% домов утеплены минеральной ватой, 30% пенополистиролом, 10% пенополиуретаном и 10% иными утеплителями или ничем.

Минеральная вата

Потенциальная опасность минераловатных теплоизоляционных изделий как источника канцерогенных факторов - пыли и фенолформальдегидных смол - послужила основанием для многих исследований воздействия её на человека и животных. Так, например, в декабре 1997 года Европейским союзом была опубликована директива, классифицирующая различные сорта минеральной ваты по степени опасности. Согласно этой директиве, минеральная вата рассматривалась, как раздражающее вещество (ирритант); к 2-й группе (потенциально опасно) или 3-й группе (недостаточно данных для надёжной оценки) группе канцерогенной опасности её относили в зависимости от содержания оксидов щелочных и щелочноземельных металлов и размера волокон. Весьма жёсткий подход по оценке опасности искусственных минеральных волокон принят в Германии; здесь запрещены многие виды минеральных волокон, в других странах рассматриваются как безопасные; что вызывает серьёзное беспокойство производителей.

Международное агентство по изучению рака (МАИР) в 2001 году подготовило доклад об оценке канцерогенности искусственных минеральных волокон, согласно которому стеклянная (из непрерывного стекловолокна), каменная и шлаковая вата отнесены к группе 3 по степени опасности (для МВ из этих материалов отсутствуют достаточные доказательства канцерогенности для человека, а свидетельства в пользу канцерогенности для животных ограничены). В то же время МВ, изготовленная из огнеупорных керамических волокон и из некоторых видов прерывного стекловолокна, отнесена к группе 2B по степени опасности (для этих типов минеральной ваты существуют обоснованные данные, подтверждающие канцерогенность для животных).

Чтобы понять, из чего же состоит минеральная вата и стекловата, рассмотрим усредненный состав:

Усредненный состав для производства минеральной ваты и стекловаты

Минеральная вата, конечно, не горит, но при высоких температурах, имеет свойство тлеть и выделять те продукты, из которых она состоит. Может минеральная вата не так опасна при горении по сравнению с другими материалами, зато она вредна при долговременной эксплуатации.

Пенополистирол

Высокотемпературная фаза деструкции пенополистирола начинается при температуре +160°С (механохимическая деструкция). С повышением температуры до +200°С начинается фаза термоокислительной деструкции. Свыше +260оС преобладают процессы термической деструкции и деполимеризации. В связи с тем, что теплота полимеризации полистирола и поли-"""α"""-метилстирола одни из самых низких среди всех полимеров (71 и 39 кДж/моль соответственно), в процессах их деструкции преобладает деполимеризация до исходного мономера - стирола. А как известно стирол как мономер, очень вреден для человеческого здоровья. Также как и при горении любого полимера будет выделяться углекислый газ и угарный газ. В принципе по сравнению с многими полимерами, пенополистирол не так вреден. Но согласно исследованиям пенополистирол выделяет очень много дыма.

А если учитывать что теплопроводность пенополистирола к примеру с пенополиуретаном выше на 25%, значит его нужно на 25% толще, чтобы достигнуть нужных нормативов при строительстве. Значит он будет выделять еще на 25% больше дыма.

Пенополиуретан

При горении пенополиуретана выделяется вода, углекислый и угарный газы, окись азота, также в зависимости от марки пенополиуретана возможно образование синильной кислоты. Из результатов исследований следует, что основной токсический компонент продуктов сгорания пенополиуретана на всех этапах пожара, и при низких, и при высоких температурах, это угарный газ.

Замечено, что синильная кислота и окись азота, как правило, образуются при сгорании органических соединений, которые содержат азот, таких, как шерсть, кожа, синтетические ткани. Помимо этого, при горении любых органических материалов, выделяется угарный газ. Пенополиуретан, если сравнивать с другими материалами органического происхождения, выделяет токсичные продукты при воздействии более высокой температуры.

Синильная кислота же, при 700°С определяется лишь следами, но, уже при 850°С её концентрация в воздухе возрастает примерно в 28 раз, а при 1000°С – в 50 раз, достигая заметного уровня лишь в этих условиях.

Оценивая пожароопасность пенополиуретана, можно отметить, что этот материал имеет известные преимущества, по сравнению с другими горючими материалами, которые применяются в строительстве.

Первое – из-за небольшой плотности, количество горящего материала объёмом соответственно меньше. Второе – низкая теплопроводность и присущая ему мелкоячеистая структура будет препятствовать прогреву материала во внутренних слоях, поэтому термическое разложение пенополиуретана происходит лишь в поверхностном слое. Третье – время самостоятельного горения этого материала, весьма мало (менее 10 сек.), а процесса тления после попадания, например, кусочков раскалившегося шлака, капель расплавленного металла, искры и т.д. попросту не происходит.

Выводы:

Итак, практически все горит, плавится, а если нет, тогда деструктирует и выделяет различные токсичные вещества. Человечество еще не придумало идеального утеплителя или материала, который не приносит ни какого вреда человеку. Поэтому при выборе утеплителя, надо для себя решить каким основным критериям он должен соответствовать: низкий коэффициент теплопроводности, класс горючести, низкий уровень дымовыделения, приемлемый уровень токсичности и т.д. Критериев множество. Можно вообще не утеплять, тогда придется разориться и сделать очень толстые стены и то это может не помочь. Но, как известно, гореть начинает не утеплитель, а то, что находиться внутри дома, поэтому эта мера не принесет ожидаемой пользы. Вы даже можете посмотреть пожарную статистику и вы не найдете не одного пожара связанного с возгоранием утеплителя. По моему мнению, нужно утепляться, а какими материалами это уже должен определить каждый сам для себя. Если люди так переживают за свой дом, тогда нужно делать хорошую пожарную сигнализацию, а еще лучше устанавливать автоматические системы пожаротушения, которые смогут потушить или задержать пожар до приезда пожарных.

Вконтакте

Многим известно, что смерть во время пожара наступает чаще из-за отравления продуктами горения, нежели от термического воздействия. Но отравиться можно не только во время пожара, но и в повседневной жизни. Возникает вопрос о том, какие существуют виды продуктов горения и при каких условиях они образуются? Давайте попробуем в этом разобраться.

Что такое горение и его продукт?

Бесконечно можно смотреть на три вещи: как течет вода, как работают другие люди и, конечно, как горит огонь...

Горение - это физико-химический процесс, основой которого является окислительно-восстановительная реакция. Сопровождается она, как правило, выбросом энергии в виде огня, тепла и света. В этом процессе принимают участие вещество или смесь веществ, которые горят, - восстановители, а также окислитель. Чаще всего эта роль принадлежит кислороду. Горение также можно назвать процессом окисления горящих веществ (важно помнить, что горение - подвид реакций окисления, а не наоборот).

Продукты горения - это все то, что выделяется во время сжигания. Химики в таких случаях говорят: "Все, что находится в правой части уравнения реакции". Но это выражение неприменимо в нашем случае, так как, кроме окислительно-восстановительного процесса, происходят также и а некоторые вещества просто остаются неизменными. То есть продуктами горения являются дым, зола, копоть, выделяемые газы, в том числе и выхлопные. Но особым продуктом является, конечно, энергия, которая, как отмечено в прошлом абзаце, выбрасывается в виде тепла, света, огня.

Вещества, выделяемые во время горения: оксиды углерода

Существует два оксида углерода: CO 2 и CO. Первый носит название углекислый газ (углекислота, оксид углерода (IV)), так как представляет собой бесцветный газ, состоящий из углерода, полностью окисленного кислородом. То есть углерод в данном случае имеет максимальную степень окисления - четвертую (+4). Этот оксид является продуктом горения абсолютно всех органических веществ, если те во время горения находятся в избытке кислорода. Кроме того, углекислота выделяется живыми существами при дыхании. Сам по себе он не опасен, если его концентрация в воздухе не превышает 3 процентов.

Оксид углерода (II) (окись углерода) - CO - это ядовитый газ, в молекуле которого углерод находится в степени окисления +2. Именно поэтому это соединение может "догорать", то есть продолжать реакцию с кислородом: СО+О 2 =СО 2 . Главной опасной особенностью этого оксида является его невероятно большая, по сравнению с кислородом, способность присоединяться к эритроцитам. Эритроциты - красные клетки крови, задачей которых является транспортировка кислорода от легких к тканям и наоборот, углекислого газа к легким. Поэтому главная опасность окиси в том, что она мешает переносу кислорода к различным органам тела человека, тем самым вызывая кислородное голодание. Именно СО чаще всего вызывает отравление продуктами горения при пожаре.

Оба оксида углерода не имеют ни цвета, ни запаха.

Вода

Всем известная вода - Н 2 О - также выделяется во время горения. При температуре горения продукты выделяются в А вода как пар. Вода является продуктом горения газа метана - СН 4 . Вообще, вода и углекислота , опять все зависит от количества кислорода) в основном выделяются при полном сгорании всех органических веществ.

Сернистый газ, сероводород

Сернистый газ также является оксидом, но на этот раз серы - SO 2 . Он имеет большое количество названий: двуокись серы, диоксид серы, сернистый ангидрид, оксид серы (IV). Представляет собой этот продукт горения бесцветный газ, с резким запахом подожженной спички (он при ее возгорании и выделяется). Выделяется ангидрид при горении серы, серосодержащих органических и неорганических соединений, например, сероводорода (Н 2 S).

При попадании на слизистую глаз, носа или рта человека двуокись легко реагирует с водой, образуя сернистую кислоту, которая легко разлагается обратно, но при этом успевает раздражать рецепторы, спровоцировать воспалительные процессы дыхательных путей: H 2 O+SO 2 ⇆H 2 SO 3 . Этим обусловлена токсичность продукта горения серы. Сернистый газ, так же как и угарный, может гореть - окисляться до SO 3 . Но происходит это при очень высокой температуре. Данное свойство используется при производстве серной кислоты на заводе, так как SO 3 реагирует с водой, образует H 2 SO 4 .

А вот сероводород выделяется при термическом разложении некоторых соединений. Этот газ также ядовит, имеет характерный запах тухлых яиц.

Цианистый водород

Тогда Гиммлер сжал челюсти, раскусил ампулу с цианистым калием и через несколько секунд умер.

Цианистый калий - сильнейший яд - соль также известной как цианистый водород - HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа. Синильная кислота очень ядовита, даже небольшая - 0,01 процент - концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Аппетитно, не правда ли?

Но синильной кислоте присуща одна "изюминка" - отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только противогазом не получится.

Акролеин

Пропеналь, акролеин, акрилальдегид - все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит. При попадании жидкости или ее паров на слизистые, особенно в глаза, вызывает сильное раздражение. Пропеналь является высокореакционным соединением, и это объясняет его высокую токсичность.

Формальдегид

Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. бесцветный газ с резким запахом.

Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот - N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды - газы, имеют бурый цвет и чрезвычайно токсичны.

Пепел, зола, копоть, сажа, уголь

Копоть, или сажа - остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом.

Зола, или пепел - мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения. При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу.

А уголь - это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть.

Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ. Перечислить их всех нереально, да и не нужно, потому что другие вещества выделяются в ничтожно малых количествах, и только при окислении определенных соединений.

Прочие смеси: дым

Звезды, лес, гитара... Что может быть романтичней? А не хватает одного из самых главных атрибутов - костра и струйки дыма над ним. А что такое дым?

Дым - это некая смесь, которая состоит из газа и взвешенных в нем частиц. В роли газа выступают пары воды, угарный и углекислый газ и другие. А твердыми частицами являются пепел и просто не сгоревшие остатки.

Выхлопные газы

Большинство современных машин работает на двигателе внутреннего сгорания, то есть для движения используется энергия, получающаяся при сгорании топлива. Чаще всего это бензин и другие нефтепродукты. Но при выгорании в атмосферу выбрасывается большое количество отходов. Это и есть выхлопные газы. Они высвобождаются в атмосферу в виде дыма из выхлопных труб автомобиля.

Большую часть от их объема занимает азот, а также вода, углекислота. Но также выбрасываются и токсичные соединения: угарный газ, оксиды азота, не сгоревшие углеводороды, а также сажа и бензпирен. Последние два являются канцерогенами, то есть повышают риск развития рака.

Особенности продуктов полного окисления (в данном случае горения) веществ и смесей: бумага, сухая трава

При сгорании бумаги выделяется в основном также углекислый газ и вода, а при недостатке кислорода - угарный газ. Кроме того, бумага в своем составе содержит склеивающие вещества, которые могут выделяться и концентрироваться, и смолы.

Та же ситуация происходит и при сгорании сена, только без склеивающих веществ и смолы. В обоих случаях дым белый с желтым оттенком, со специфическим запахом.

Древесина - дрова, доски

Древесина состоит из органических веществ (в том числе серо- и азотсодержащих) и небольшого количества минеральных солей. Поэтому при ее полном сгорании выделяются углекислота, вода, азот и сернистый газ; образуется серый, а иногда черный дым со смолистым запахом, пепел.

Сера и азотсодержащие вещества

Про токсичность, продукты горения этих веществ мы уже говорили. Стоит отметить еще, что при горении серы выделяется дым с серовато-серым цветом и резким запахом сернистого газа (так как именно двуокись серы и выделяется); а при горении азотистых и других азотсодержащих веществ желто-бурый, с раздражающим запахом (но дым появляется не всегда).

Металлы

При горении металлов образуются оксиды, пероксиды или надпероксиды этих металлов. Кроме того, если металл содержал какие-то органические или неорганические примеси, то образуются продукты горения этих примесей.

Но особенность горения имеет магний, так как горит он не только в кислороде, как другие металлы, но и в углекислом газе, образуя при этом углерод и оксид магния:2 Mg+CO 2 =C+2MgO. Дым образуется белый, без запаха.

Фосфор

При горении фосфора выделяется белый дым, пахнущий чесноком. При этом образуется оксид фосфора.

Резина

И, конечно, резина. Дым от горящей резины - черный, из-за большого количества сажи. Кроме того, выделяются продукты горения органических веществ и оксид серы, а благодаря ему дым приобретает сернистый запах. Также выделяются тяжелые металлы, фуран и другие токсичные соединения.

Классификация отравляющих веществ

Как вы, наверное, уже могли заметить, большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным разобрать и классификацию отравляющих веществ.

В первую очередь, все отравляющие вещества - далее ОВ - делятся на смертельные, временно выводящие из строя и раздражающие. Первые делят на ОВ поражающие нервную систему (Ви-Икс), удушающие (угарный газ), кожно-нарывные (иприт) и обще-ядовитые (цианистый водород). К примерам временно выводящих из строя ОВ можно отнести Би-Зет, а раздражающим - адамсит.

Объем

Теперь поговорим про те вещи, про которые нельзя забывать, говоря о продуктах, выбрасываемых при сгорании.

Объем продуктов горения - важная и очень полезная информация, которая, например, поможет определить уровень опасности сгорания того или иного вещества. То есть, зная объем продуктов, можно определить количество вредных соединений, входящих в состав выделившихся газов (как вы помните, большинство продуктов - газы).

Чтобы рассчитать искомый объем, в первую очередь нужно знать, был ли избыток или недостаток окислителя. Если, допустим, кислород содержался в избытке, то вся работа сводится к тому, чтобы составить все уравнения реакции. Следует помнить, что топливо, в большинстве случаев, содержит примеси. После высчитывается по закону сохранения массы количество вещества всех продуктов горения и, учитывая температуру и давление, по формуле Менделеева-Клапейрона, находится сам объем. Конечно, для ничего не смыслящего в химии человека все выше перечисленное выглядит страшно, но на самом деле ничего трудного нет, надо только разобраться. Подробнее на этом останавливаться не стоит, так как статья не об этом. При недостатке кислорода увеличивается сложность расчета - меняются уравнения реакций и сами продукты горения. Кроме того, сейчас используются более сокращенные формулы, но для начала лучше считать представленным способом (если это требуется), чтобы понять смысл вычислений.

Отравление

Некоторые вещества, выбрасываемые в атмосферу при окислении горючего, токсичны. Отравление продуктами горения - вполне реальная угроза не только при пожаре, но и в автомобиле. Кроме того, вдыхание или другой способ попадания некоторых из них не приводит к мгновенному негативному результату, а напомнит об этом через некоторое время. К примеру, так ведут себя канцерогены.

Естественно, каждому нужно знать правила, предотвращающие негативные последствия. В первую очередь, это правила противопожарной безопасности, то есть то, что каждому ребенку рассказывают с самого раннего детства. Но, почему-то, часто бывает, что и взрослые, и дети просто забывают их.

Правила оказания первой помощи при отравлении многим тоже, скорее всего, знакомы. Но на всякий случай: самое главное, вынести отравившегося человека на свежий воздух, то есть отгородить от дальнейшего попадания токсинов в его организм. Но и нужно помнить, что существуют методы защиты от продуктов горения органов дыхания, поверхности тела. Это защитный костюм пожарных, противогазы, кислородные маски.

Защита от токсичных продуктов горения очень важна.

Использование в личных целях человека

Тот момент, когда люди научились использовать огонь в своих целях, стал, несомненно, переломным в процессе развития всего человечества. К примеру, одни из самых главных его продуктов - тепло и свет - использовались (и используются до сих пор) человеком при приготовлении пищи, освещении и согревании в холодное время. Уголь в древности использовался как чертежный инструмент, а сейчас, например, как лекарство (активированный уголь). То, что оксид серы используется при приготовлении кислоты, также отмечалось, таким же образом используется и оксид фосфора.

Вывод

Стоит отметить, что все рассказанное здесь - лишь общие сведения, представленные для ознакомления с вопросами о продуктах горения.

Хочется сказать, что соблюдение правил безопасности и разумное обращение как с самим процессом горения, так и с его продуктами, позволит использовать их с пользой.

Q 2 =570,6 кДж

Q 3 =392,9 кДж

Поскольку начальные и конечные продукты в обоих случаях одинаковы, их общие тепловые эффекты согласно закону, равны, то есть

Q 1 +Q сг =Q 2 +Q 3

или Q сг =Q 2 +Q 3 -Q 1 =570,6+392,9-74,8=888,7 кДж

Согласно закону Гесса Г.Г. теплота сгорания химического вещества (или смеси) равна разности между суммой теплот образования продуктов сгорания и теплотой образования сгоревшего вещества (или веществ, составляющих горючую смесь).

Теплотой образования называется тепловой эффект, получающийся при образовании одного моля вещества из свободных элементов в стандартных условиях. За стандартне условия принимают температуру 25°С и давление 1 атм . всех веществ, участвующих в реакции. Теплоту образования химических веществ определяют по термохимическим таблицам . Теплота образования продуктов сгорания:

½ = 94,5 ккал/моль

½ =26,4 ккал/моль

½ = 57,7 ккал/моль

Следует отметить, что теплота образования простых веществ ( и др.) принимается равной нулю.

Пример. Определить теплоту сгорания углерода (С).

Решение. 1. Составляем уравнение реакции горения углерода, принимая в уравнении (1.33) значения величин а=1, b=c=d=0.

2. Находим теплоту образования углекислого газа и углерода С. Согласно приведённым выше пояснениям

½ = 94,5 ккал/моль, ½ =0

3. Определяем теплоту сгорания углерода

Теплоту сгорания различных веществ определяют также экспериментально в калориметрической бомбе и газовом калориметре.

Различают высшую и низшую теплоты сгорания. Принято считать, что высшая теплота сгорания больше низшей на величину испарения влаги, находящейся в продуктах сгорания. Более строгое определение , приведено, например, в .

Высшей теплотой сгорания называют количество тепла, выделяемое при полном сгорании единицы массы горючего вещества при условии, что содержащийся в нём водород сгорает с образованием жидкой воды (при конденсации водяного пара). Низшей теплотой сгорания называется количество тепла, выделяемое аналогично при полном сгорании единицы массы горючего вещества при условии сгорания водорода до образования водяного пара и испарении влаги горючего вещества.

При задании элементного состава твёрдого или жидкого горючего вещества в весовых (массовых) процентах для определения и рекомендуется использовать формулы Д.И. Менделеева :

где и - высшая и низшая теплоты сгорания, ;

[C ], [H ], [O ], [S ], W – содержание в горючем веществе углерода, водорода, кислорода, серы и влаги, % .

Пример. Определить низшую теплоту сгорания сернистого мазута, в состав которого входят углерод (82,5%), водород (10,65%), сера (3,1%), кислород (0,5%), влага (3%), зола (0,25%).

Решение. Искомую теплоту сгорания вычисляем по второй формуле (1.34)

Существует низший предел теплоты сгорания, ниже которого вещества становятся не способными к горению в атмосфере воздуха. Вещества являются негорючими, если они не относятся к взрывоопасным и если их теплота сгорания не превышает 2,1 .

Следует отметить, что в расчетах выделения тепла в условиях реальных пожаров за величину теплоты сгорания принимается , так как образующийся при сгорании водяной пар уходит в атмосферу, не конденсируясь в воду.

Известно, что при пожарах многие вещества и материалы горят с обра-зованием значительного количества сажи. Сажа (углерод) способна само-стоятельно гореть и выделять тепло. Следовательно, если при горении она образуется, то горючее вещество выделяет тепла меньше, происходит так называемый недожог. Для веществ, богатых углеродом (нефть, мазут, рубероид, бензол и др.) коэффициент недожога составляет , при горении древесины =0,85 .

Взрыв – процесс освобождения больщого количества энергии в ограниченном объеме за короткий промежуток времени. В результате взрыва вещество, заполняющее объем, превращается в сильно нагретый газ и при этом происходит резкое изменение давления в среде, что сопровождается образованием ударной (взрывной) волны.

Взрывоопасную среду могут образовать:

Смеси газов, паров, пылей с воздухом и другими окислителями (кислород, озон, хлор, окислы азота и др.) ;

а также ВВ.

Вещества, склонные к взрывному превращению (ацетилен, озон, гидразин и др.);

Источником инициирования взрыва являются:

Открытое пламя, горящие и раскаленные тела;

Электрические разряды;

Тепловые проявления химических реакций и механических

воздействий;

Искры от удара и трения;

Ударные волны;

Электромагнитные и другие излучения.

«Классическая» форма ударной волны при взрыве заряда взрывчатого вещества в воздухе приведена на рис. 1.

При подходе ударной волны к некоторой точке пространства давление, плотность и другие гидродинамические элементы в этой точке скачком возрастают. Затем следует постепенное изменение этих величин, причем через некоторый промежуток времени давление и плотность в данной точке пространства становятся меньше, чем те же параметры в невозмущенной среде. Постепенно падает скорость движения частиц, затем меняя свое направление.

Эпюра ударной волны

1- фаза сжатия, 2- фаза разрежения

Таким образом, эпюра ударной волны включает области положительных и отрицательных избыточных давлений. Передняя граница сжатой области называется фронтом ударной волны, а сама область – фазой сжатия. За фазой сжатия следует фаза разрежения. Разность ,где -атмосферное давление, называется избыточным давлением во фронте ударной волны, время -длительностью фазы сжатия, время - длительностью фазы разрежения. Воздух в фазе сжатия движется в сторону распространения фронта, в фазе разрежения – в противоположном направлении.

Площадь, ограниченную эпюрой давления в фазе сжатия, называют импульсом давления в фазе сжатия ,

где - избыточное давление в фазе сжатия.

Установлено, что толщина фронта ударной волны определяется величиной порядка длины свободного пробега молекулы () см .

Взрывы происходят: - при химических реакциях (горение);

При электрических разрядах;

При ядерных реакциях деления и синтеза;

При разгерметизации емкостей под давлением.

В производственных условиях потенциальными взрывоопасными объектами являются – склады ЛВЖ, СУГ, ВВ, нефтепродуктов; элеваторы зерна; мукомольные комбинаты (мучная пыль); газопроводы; транспортные средства по перевозке (ж/д, авто и др.) СУГ, нефтепродуктов, химических веществ, ВВ; химические и фармацевтические производства и др.

Опасные факторы пожара (ГОСТ 12.1.004-96)

К опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

Тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;

5) пониженная концентрация кислорода;

6) снижение видимости в дыму.

2. К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

5) воздействие огнетушащих веществ.

Опасные факторы взрыва, происшедшего вследствие пожара (ГОСТ 12.1.010-76)

1.8. Опасными и вредными факторами, воздействующими на работающих в результате взрыва, являются:

- ударная волна , во фронте которой давление превышает допустимое значение;

Обрушивающиеся конструкции, оборудование, коммуникации, здания и сооружения и их разлетающиеся части;

Образовавшиеся при взрыве и (или) выделившиеся из поврежденного оборудования вредные вещества, содержание которых в воздухе рабочей зоны превышает предельно допустимые концентрации.

1. Допустимые параметры пожарной и взрывной опасности

(ГОСТ 12.3.047-96)

Значения допустимых параметров пожарной и взрывнойопасности должны быть такими, чтобы исключить гибель людей и ограничить распространение аварии за пределы рассматриваемого технологического процесса на другие объекты, включая опасные производства.

Таблица 1- Предельно допустимое избыточное давление при сгорании газо-, паро- или пылевоздушных смесей в помещениях или в открытом пространстве

Таблица 2- Предельно допустимая интенсивность теплового излучения пожаров приливов ЛВЖ и ГЖ

Степень поражения Интенсивность теплового излучения, кВт/м 2
Без негативных последствий в течение длительного времени 1,4
Безопасно для человека в брезентовой одежде 4,2
Непереносимая боль через 20-30 с Ожог 1-й степени через 15-20 с Ожог 2-й степени через 30-40 с Воспламенение хлопка-волокна через 15 мин 7,0
Непереносимая боль через 3-5 с Ожог 1-й степени через 6-8 с Ожог 2-й степени через 12-16 с 10,5
Воспламенение древесины с шероховатой поверхностью (влажность 12 %) при длительности облучения 15 мин 12,9
Воспламенение древесины, окрашенной масляной краской по строганой поверхности; воспламенение фанеры 17,0

Таблица 3- Предельно допустимая доза теплового излучения при воздействии “огненного шара” на человека