Распространение ударной волны. Ударная волна и характеризующие ее параметры. Сходящаяся ударная волна

Воздушная ударная волна представляет собой область резкого сжатия воздуха, распространяющуюся во все стороны от центра взрыва со сверхзвуковой скоростью. Источником возникновения воздушной ударной волны является высокое давление в центре взрыва, достигающее 10 5 млрд. Па. Основные параметры ударной волны, характеризующие ее разрушающее и поражающее действие: избыточное давление во фронте ударной волны, давление скоростного напора, продолжительность действия ударной волны.

Продукты взрыва, стремясь расшириться, сжимают окружающие их слои воздуха. Эта уплотненная масса воздуха в свою очередь расширяется и передает давление соседним слоям.

Так, давление быстро передается от слоя к слою, образуя ударную волну в воздухе. Передняя граница сжатого слоя воздуха, характеризующаяся резким увеличением давления, называется фронтом ударной волны. В непосредственной близости от центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. По мере удаления от центра скорость постепенно уменьшается, а ударная волна ослабевает.

Скорость движения и расстояние, на которое распространяется ударная волна, зависят от мощности взрыва. Чем мощнее взрыв, тем больше скорость и радиус действия ударной волны. Кроме того, на радиус действия ударной волны оказывают влияние рельеф местности, метеорологические условия и ветер.

При быстром движении ударной волны происходит также перемещение частиц воздуха в сжатом слое в направлении распространения ударной волны. Воздух движется за фронтом волны со сверхзвуковой скоростью и представляет собой ураган огромной силы.

Направление и скорость движения воздуха за фронтом ударной волны изменяются. Когда фронт ударной волны доходит до какой-либо точки на поверхности земли, то в этой точке мгновенно повышаются избыточное давление и температура, а воздух начинает перемещаться в сторону движения ударной волны.

В дальнейшем, по мере продвижения ударной волны, давление падает ниже атмосферного, и воздух движется в обратную сторону. Следовательно, за фазой сжатия следует фаза разрежения. Характер действия ударной волны зависит от вида взрыва. При воздушном ядерном взрыве образуется сферическая ударная волна, которая в ближней зоне, т. е. на расстоянии, меньшем высоты взрыва (RH), скорость отраженной волны больше скорости волны падающей. В результате происходит сложение падающей и отраженной волн и образуется головная волна, давление в которой в 4-5 раз больше давления во фронте свободно распространяющейся сферической волны. Головная волна распространяется вдоль поверхности земли (рисунок 6).



1 - падающая волна; 2 - отраженная волна; 3 - головная волна.

Рисунок 6 - Распространение ударной волны при воздушном взрыве.

Таким образом, поражающее действие ударной волны воздушного ядерного взрыва в ближней зоне определяется давлением отраженной волны, а в дальней зоне - давлением головной ударной волны.

При наземном ядерном взрыве ударная волна, имеющая форму непрерывно увеличивающегося полушария, распространяется параллельно поверхности земли (рисунок 7) и не имеет столь сложной картины, как при воздушном взрыве.

Рисунок 7 - Распространение ударной волны при наземном взрыве.

Радиус поражения ударной волной наземного ядерного взрыва примерно на 20% меньше, чем радиус поражения воздушного взрыва одинаковой мощности.

Основными параметрами, определяющими поражающее действие ударной волны, являются избыточное давление, скоростной напор воздуха и время действия избыточного давления (время действия фазы сжатия).

Поражающее действие ударной волны определяется главным образом избыточным давлением.

Избыточное давление - это разность между нормальным атмосферным давлением перед фронтом волны и максимальным давлением во фронте ударной волны. Оно измеряется в ньютонах на квадратный метр (1 H/m 2 s 1 Па). Эта единица давления - паскаль (Па); (1 кПа = 0,01 кгс/см).

Скоростной напор воздуха - это динамическая нагрузка, создаваемая потоком воздуха. Как и избыточное давление, скоростной напор воздуха измеряется в Паскалях (Па). Величина скоростного напора воздуха зависит от скорости и плотности воздуха за фронтом волны и тесно связана со значением максимального избыточного давления ударной волны. Скоростной напор воздуха заметно сказывается при избыточных давлениях свыше 50 кПа.

Продолжительность действия избыточного давления (время действия фазы сжатия) измеряется секундами (с). Чем продолжительнее воздействие ударной волны, тем сильнее ее поражающее действие. С увеличением мощности взрыва время действия фазы сжатия увеличивается. Например, при взрыве мощностью 20 кт время действия фазы сжатия составляет 0,6 с, а при мощности взрыва 1 Мт - 3 с.

Непосредственное поражение человека ударной волной возникает в результате воздействия избыточного давления и скоростного напора воздуха. Ударная волна почти мгновенно охватывает человека и сжимает его со всех сторон. Мгновенное повышение давления в момент прихода ударной волны воспринимается как резкий удар. Скоростной напор воздуха действует с одной стороны, обладает метательным действием и может отбросить человека, причинив ему травмы.

Косвенными поражениями называются поражения, наносимые человеку обломками зданий, деревьев и другими предметами, которые под действием скоростного напора воздуха перемещаются с большой скоростью. Воздействуя на людей, ударная волна вызывает переломы, повреждение внутренних органов, контузии, т. е. вызывает травмы различной тяжести, которые подразделяются на:

а) легкие, возникающие при избыточном давлении 20 - 40 кПа и характеризующиеся ушибами, вывихами, временными повреждениями слуха, общей контузией;

б) средние, появляющиеся при избыточном давлении 40 - 60 кПа, характеризующиеся серьезными контузиями всего организма, повреждениями органов слуха, кровотечением из носа и ушей, а также сильными вывихами конечностей;

в) тяжелые, возникающие при избыточном давлении 60 - 100 кПа, характеризующиеся сильными контузиями всего организма, тяжелыми переломами конечностей и сильными кровотечениями из носа и ушей;

г) крайне тяжелые, наблюдающиеся при избыточном давлении свыше 100 кПа. Эти травмы могут привести к смертельному исходу.

Радиусы поражения ударной волной ядерного взрыва и виды травм зависят от мощности взрыва.

Радиус поражения людей обломками зданий, особенно осколками стекол, разрушающихся при избыточном давлении 2 - 7 кПа, может превышать радиус непосредственного поражения ударной волной.

Для защиты от ударной волны необходимы подземные сооружения -убежища, рассчитанные на сопротивление воздействию ударной волны. При отсутствии убежищ используются построенные укрытия, а также подземные выработки, шахты, естественные укрытия и рельеф местности. Защитные свойства рельефа местности зависят от его характера. Лучшую защиту обеспечивают крупные формы рельефа: возвышенности, лощины, овраги больших размеров. Однако и небольшие курганы, ямы, воронки способны ослабить действие ударной волны.

Воздействие воздушной ударной волны ядерного взрыва на здания и сооружения связано с величиной избыточного давления и скоростного напора воздуха, движущегося за фронтом ударной волны. Однако в зависимости от конструктивных особенностей того или иного сооружения степень его разрушения может определяться либо избыточным давлением, либо скоростным напором.

Большие здания, имеющие значительную площадь стен, разрушаются главным образом под действием избыточного давления. При этом разрушение происходит вследствие первоначального кратковременного удара, возникшего в результате отражения ударной волны. Это происходит потому, что для обтекания ударной волной такого здания требуется некоторое время, а это вызывает сравнительно длительное действие давления отражения ударной волны.

Пока ударная волна движется, не встречая препятствий, она создает изменяющуюся во времени нагрузку, равную избыточному давлению в проходящей ударной волне. При подходе ударной волны к преграде она отражается (образуя давление отражения) и происходит торможение масс движущегося воздуха, избыточное давление повышается. В результате этого преграда испытывает удар огромной силы, увеличившийся вследствие давления отражения.

Такое давление преграда (например, здание) испытывает в первоначальный момент. Вслед за этим ударная волна начинает обтекать здание, оказывая давление на боковые стены и верх, а затем и на заднюю стену. В результате этого здание оказывается охваченным высоким давлением и сжато со всех сторон. Однако наибольшее давление испытывает стена, обращенная к взрыву.

Характер действия ударной волны при обтекании зданий представляет собой сложное взаимодействие потоков, обтекающих здание сверху и с боков и создающих завихрения и зоны повышенного давления. Обтекание ударной волной вертикальной преграды показано на рисунке 8, когда ударная волна отражается от поверхности земли за преградой. Обтекание здания ударной волной с боков создает повышенное давление в результате встречи двух потоков (рисунок 9). По мере обтекания здания ударной волной давление отражения на переднюю стену ослабляется.

а - фронт достиг преграды, и действует полное давление отражения; б -фронт проходит преграду, и частично действует давление отражения; в - заканчивается действие давления отражения, но за преградой ударная волна отражается от поверхности земли

Рисунок 8 - Обтекание ударной волной вертикальной преграды.

а - фронт достиг преграды, создается давление отражения и начинается обтекание; б - фронт прошел преграду, и два потока движутся к тыльной стороне; в - фронт движется далее, за преградой образуется зона повышенного давления вследствие соударения потоков

Рисунок 9 - Обтекание ударной волной преграды (вид в плане).

В большей степени разрушаются отдельно стоящие здания и высокие сооружения, особенно расположенные фасадом к направлению движения ударной волны.

Из наземных зданий и сооружений наиболее устойчивыми являются здания с металлическим каркасом и сооружения антисейсмической конструкции, которые разрушаются при давлении ударной волны 50 - 80 кПа. Жилые кирпичные здания менее устойчивы и полностью разрушаются при давлении ударной волны 30-40 кПа, а деревянные строения полностью разрушаются при давлении 10-20 кПа.

На разрушение зданий и сооружений влияет наличие в стенах проемов (окон, дверей), так как ударная волна, легко разрушая их, быстро проникает внутрь здания, а давление отражения ослабляется вследствие действия избыточного давления изнутри. Полное разрушение остекления различных зданий происходит при избыточном давлении во фронте ударной волны 2-7кПа, а частичное разрушение - при 1-2 кПа, т. е. при значительно меньших давлениях.

Высокие сооружения с малой площадью (телеграфные столбы, заводские трубы, мачты, буровые вышки и другие сооружения) быстро обтекаются ударной волной и сжимаются со всех сторон, а противоположные давления уравновешиваются. Поэтому они менее чувствительны к воздействию избыточного давления. Для этих сооружений разрушающее действие ударной волны определяется действием скоростного напора воздуха.

Скоростной напор воздуха, подобно урагану, действует с одной стороны и вызывает разрушение (срыв с опор) таких сооружений, так как эти сооружения, рассчитанные на действие ветровой нагрузки, разрушаются под действием скоростного напора воздуха, превышающего ветровые нагрузки в несколько раз.

Сооружения, заглубленные в землю, меньше подвержены воздействию ударной волны, так как при своем движении ударная волна не встречает препятствия и не происходит увеличения избыточного давления из-за отражения ударной волны. По этой причине убежища, укрытия и подземные сети коммунального хозяйства, заглубленные в грунт, могут выдержать значительно большие давления, чем наземные здания.

Особенностью действия ударной волны является ее способность (в следствии относительно большой продолжительности ее действия- несколько секунд) затекать внутрь убежищ, укрытий и других сооружений через воздухозаборные трубы, отдушины, наносить там разрушения и поражать людей.

При проникании ударной волны внутрь сооружения там быстро повышается давление, которое может стать причиной гибели людей. Во избежание поражения людей затекающей волной воздухозаборные каналы убежищ снабжаются волногасительными устройствами.

Другой особенностью ударной волны является разряжение, возникающее вслед за высоким давлением. Разряжение значительно слабее ударной волны, но увеличивает эффект воздействия прямого удара и вызывает ряд специфических явлений, которые следует учитывать при проведение спасательных работ.

Степень разряжения, т.е. снижение давления ниже атмосферного, не превышает 300кПа и быстро затухает по мере удаления от центра взрыва и снижения давления на фронте ударной волны. Однако длительность фазы разряжения превышает время фазы сжатия.

Так при взрыве мощностью 1Мт фаза сжатия длится 1-5 секунд в зависимости от расстояния, а фаза разряжения-до 13 секунд при воздействии ударной волны сооружения испытывают всестороннее сжатие. В фазе разряжения сооружения так же испытывают нагрузки, но усилие значительно слабее и действует в обратном направлении (так называемый отсос). Оголовки смотровых колодцев на сетях коммунального хозяйства перекрывают стальными или чугунными крышками. Они выдерживают давление ударной волны 200-300кПа. Однако эти же крышки будут испытывать силу отсоса и за счет суммарного усилия направленного из нутрии колодца крышка может быть отброшена. Завал может быть завершен после того, как ударная волна прошла. Поэтому крышки закрепляют.

Здания и сооружения в зависимости от нагрузок, создаваемых ударной волной, могут получать полные, сильные, средние и слабые разрушения:

а) полное разрушение характеризуется разрушением и обрушением всех или большей части стен, сильной деформацией или обрушением перекрытий (Рисунок 10 а,б). Из обломков образуется завал в пределах контура здания и вокруг него. Восстановление разрушенных зданий невозможно;

Рисунок 10 а

Рисунок 10б

б) сильное разрушение характеризуется разрушением части стен и перекрытий нижних этажей и подвалов, в результате чего повторное использование помещений невозможно или нецелесообразно (Рисунок 11а,б);

Рисунок 11а

Рисунок 11б

в) среднее разрушение характеризуется разрушением главным образом встроенных элементов: внутренних перегородок, дверей, окон и крыш; появлением трещин в стенах и обрушением чердачных перекрытий и отдельных участков верхних этажей (Рисунок 12). Подвалы сохраняются и пригодны для временного использования после разборки завалов над входами. Вокруг здания завалов не образуется, но отдельные обломки конструкций могут быть отброшены на значительное расстояние. Восстановление возможно в порядке капитального ремонта;

Рисунок 12

г) слабое разрушение характеризуется разрушением оконных и дверных заполнений и легких перегородок, появлением трещин в стенах верхних этажей (рисунок 13). Подвалы и нижние этажи сохраняются и пригодны для временного использования. Восстановление возможно в порядке капитального ремонта.

Рисунок 13

Объем разрушений в городе зависит от характера строений, их этажности и плотности застройки. При плотности застройки 50 % давление ударной волны на здания может быть меньше (на 20 - 40 %), чем на здания, стоящие на открытой местности, на таком же расстоянии от центра взрыва.

При плотности застройки менее 30% экранизирующее действие зданий незначительно и не имеет практического значения.

Энергетическое, промышленное и коммунальное оборудование может иметь следующие степени разрушений:

а) слабые разрушения: деформации трубопроводов, их повреждения на стыках; повреждения и разрушения контрольно-измерительной аппаратуры; повреждение верхних частей колодцев на водо-, тепло-, газовых сетях, отдельные разрывы на ЛЭП, повреждение станков, требующих замены электропроводки, приборов и других поврежденных частей (Рисунок 14);

Рисунок 14

б) средние разрушения: отдельные разрывы и деформации трубопроводов, кабелей; деформации повреждения отдельных опор ЛЭП; деформация и смещение на опорах цистерн, разрушение их выше уровня жидкости; повреждение станков, требующих капитального ремонта (Рисунок 15);

Рисунок 15

в) сильные разрушения: массовые разрывы трубопроводов, кабелей, разрушение опор ЛЭП и другие разрушения, которые нельзя восстановить капитальным ремонтом.

Наиболее стойки подземные энергетические сети. Они разрушаются только при наземных взрывах в непосредственной близости от центра при давлении ударной волны 600-1500 кПа. Степень и характер разрушения зависят от диаметра и материала труб, глубины их прокладки.

Станочное оборудование предприятий разрушается при избыточном давлении 35-70 кПа, а измерительное – при 2030 кПа. Для гидроузлов наиболее опасными являются надводный и подводный взрывы со стороны верхнего бьефа.

Наиболее устойчивые элементы гидроузлов - бетонные и земляные плотины, которые разрушаются при давлении более 1000КПа. Наиболее слабые - гидрозатворы водосливных плотин, оборудование и различные надстройки. Транспортные средства повреждаются в зависимости от их положения относительно направления распространения ударной волны. Наиболее устойчивы морские и речные суда и железнодорожный транспорт, очень уязвим самолет.

При избыточном давлении более 50КПа происходит полное повреждение лесного массива.

Для определения возможного характера разрушений и установления объема поисково-спасательных и других неотложных работ, обусловленных воздействием воздушной ударной волны, очаг ядерного поражения делят на четыре зоны (Рисунок 16).

Рисунок 16

Зона полных разрушений возникает там, где избыточное давление во фронте ударной волны достигает 50кПа (0,5 кгс/см 2) и более. На рисунке 17 показаны полные разрушения после бомбардировки Нагасаки 24 сентября 1945 года

Нагасаки до и после ядерного взрыва Нагасаки через 6 недель

Рисунок 17

Характер разрушений этой зоны такой же как при землетрясении 9 и более балов. В этой зоне полностью разрушаются жилые дома, промышленные здания и противорадиационные укрытия. Вокруг центра взрыва разрушаются убежища, получают различные разрушения или повреждения подземные сети коммунально-энергетического хозяйства.

Большинство убежищ в зоне полных разрушений сохраняются. На территории населенных пунктов и объектов образуются сплошные завалы.

Для зоны полных разрушений характерны массовые потери среди незащищенного населения, а также будут наблюдаться горения и тления в завалах.

Зона сильных разрушений образуется при избыточном давлении во фронте ударной волны от 50 до 30 кПа (0,5-0,3 кгс/см^2) и составляет около 10% всей площади очага. Характер разрушений как при землетрясении баллов. Наземные здания и сооружения в основном будут иметь сильные разрушения. Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, образованием трещин в стенах и деформацией перекрытий нижних этажей.

Убежища и подземные сети коммунально - энергитического хозяйства, а также большинство противорадиационных укрытий сохраняются.

Подвалы в зданиях не повреждаются, если их перекрытия удержат нагрузку от обрушенных стен и междуэтажных перекрытий.

В результате разрушений зданий и сооружений образуются местные завалы, переходящие ближе к границе зоны полных разрушений в сплошные.

Для зоны характерны массовые, в значительной части безвозвратные потери среди незащищенной части населения.

Люди, оставшиеся в зданиях, могут быть завалены, либо могут получить травмы и ожоги вне зданий легкой и средней тяжести. Кроме того, возможны поражения обломками построек, осколками стекла и другими летящими предметами, а также ‘’ вторичные ожоги ‘’ от пламени горящих зданий горючесмазочных материалов и т.п.

При попадании в зону радиоактивного заражения, образующуюся при наземных и подземных взрывах, население подвергнется воздействию радиоактивных веществ.

Зона средних разрушений характеризуется избыточным давлением во фронте ударной волны от 30 до 20кПа (0,3-0,2кгс/см^2) и занимает около 18% площади очага ядерного поражения. Характер разрушений как при землетрясении баллов.

Убежища, противорадиационные укрытия и подвальные помещения полностью сохраняются. Деревянные здания будут сильно или полностью разрушены, каменные - получают средние и слабые разрушения.

Среднее разрушение проявляется в разрушении крыш и встроенных перегородок, окон, а также в возникновении трещин в стенах, обрушении отдельных участков чердачных перекрытий и стен верхних этажей. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей.

Слабое разрушение проявляется в разрушении оконных и дверных заполнений, легких перегородок; Частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью. Находиться в здании безопасно, и оно может эксплуатироваться после проведения текущего ремонта.

В зоне средних разрушений образуются отдельные завалы. Для зоны характерны массовые санитарные потери среди незащищенного населения. Люди могут получить легкие травмы, ожоги, а при наземных взрывах возможны поражения радиоактивными осадками.

Зона слабых разрушений образуется при избыточном давлении во фронте ударной волны от 20 до 10кПа (0,2-0,1кгс/см^2). На ее долю приходиться до 60% площади всего очага. В пределах этой зоны здания получают слабые разрушения. В некоторых местах образуются отдельные завалы.

Незащищенные люди могут получить ожоги, легкие травмы, а также поражения радиоактивными веществами при наземных взрывах.

За приделами зон разрушений очага поражения здания и сооружения могут получить незначительные повреждения: разрушение остекления, повреждение оконных рам, дверей, кровли. Возможно также возникновение отдельных очагов пожаров. В этих условиях люди могут получить легкие ранения и ожоги.

В системе мероприятий гражданской обороны важное значение имеет организация и ведение работ по спасению населения, оказавшегося в очагах поражения и ликвидации последствий аварий, катастроф и стихийных бедствий.

Как показывают аварии на АЭС, а также на крупных химических, нефтеперерабатывающих, металлургических и многих других предприятиях могут привести к катастрофическим последствиям, гибели людей, большим материальным потерям.

Для успешного выполнения аварийных работ требуется заблаговременная инженерная подготовка городского и объектового КЭХ, повышение его устойчивости, умение быстро находить грамотные решения по организации и ведению этих работ.

Последнее достигается обучением личного состава формирований гражданской обороны и населения умелым действиям в ЧС. Для формирования инженерно-технических мероприятий ОХК, необходимо заблаговременно оценить возможную инженерную и пожарную обстановку.

Инженерная обстановка - состояние современной системы инженерного оборудования в городах, на промышленных и других объектах. Она включает многочисленные линии трубопроводов городского и промышленного водоснабжения, канализации, газовых сетей теплоснабжения, электрокабелей и др., а также различных зданий и сооружений.

Инженерная обстановка выявляется с целью определения характера возможных разрушений, аварий и поражений на объектах хозяйствования при образовании очагов поражения ЧС техногенного и природного характера. На планах и схемах границы зон разрушений показываются в виде концентрических окружностей красного цвета.

Радиусы окружностей зоны разрушений определяют по таблицам, а также по формуле Закона подобия взрывов.

Содержание статьи

УДАРНАЯ ВОЛНА –этораспространяющийся по среде фронт резкого, почти мгновенного, изменения параметров среды: плотности, давления, температуры, скорости. Ударные волны называют также сильными разрывами или скачками. Причины возникновения ударных волн в газах – полеты со сверхзвуковыми скоростями (звуковой удар), истечения с большими скоростями через сопла, мощные взрывы, электрические разряды, интенсивное горение.

Ударные волны в воде носят название гидравлического удара. С этим явлением пришлось столкнуться при устройстве первых водопроводов: первоначально водопроводные задвижки перекрывали воду слишком быстро. Резкое прекращение тока воды вызывало ударную волну (гидравлический удар), распространявшуюся в трубе водопровода и часто вызывавшую разрыв такой трубы. Для решения этой проблемы в России был привлечен Жуковский, и она была успешно решена (1899). Ударные волны существуют и на поверхности воды: при открывании ворот шлюзов, при «запирании» течения реки (бора).

Ударные волны могут возникать и из первоначально непрерывных течений. Любая достаточно интенсивная волна сжатия порождает ударную волну из-за того, что в этих волнах задние частицы движутся быстрее впереди бегущих (нелинейное укручение фронта волны).

Ударные волны являются частью детонационных волн, волн конденсации (хорошо известным примером этого явления служат шлейфы тумана, остающиеся за самолетом при пролете через участки атмосферы с повышенной влажностью), могут возникать при взаимодействии лазерного излучения с веществом (светодетонационные волны). Сход снежной лавины также может рассматриваться как ударная волна.

В твердых телах ударные волны возникают при высокоскоростном соударении тел, в астрофизических условиях – при взрывах звезд.

Одним из примеров ударной волны является катастрофическое нарастание давки в охваченной паникой толпе, протискивающейся через узкий проход. Родственным явлением приходится затор в потоке транспорта. Ударные волны в газах были обнаружены в середине 19 в. в связи с развитием артиллерии, когда возросшая мощь артиллерийских орудий позволила метать снаряды со сверхзвуковой скоростью.

Введение понятия ударной волны приписывают немецкому ученому Бернхарду Риману (1876).

Условия на фронте ударной волны.

При переходе через ударную волну должны выполняться общих законов сохранения массы, импульса и энергии. Соответствующие условия на поверхности волны – непрерывность потока вещества, потока импульса и потока энергии:

(r – плотность, u – скорость, p – давление, h – энтальпия, теплосодержание) газа. Индексом «0» отмечены параметры газа перед ударной волной, индексом «1» – за ней. Эти условия носят название условий Ренкина – Гюгонио, поскольку первыми из опубликованных работ, где были сформулированы эти условия, считаются работы британского инженера Вильяма Ренкина (1870) и французского баллистика Пьера Анри Гюгонио (1889).

Условия Ренкина – Гюгонио позволяют получить давление и плотность за фронтом ударной волны в зависимости от начальных данных (интенсивности ударной волны и давления и плотности перед ней):

h – энтальпия газа (функция r и p ). Эта зависимость носит название адиабаты Гюгонио, или ударной адиабаты (рис. 1).

Фиксируя на адиабате точку, соответствующую начальному состоянию перед ударной волной, получаем все возможные состояния за волной заданной интенсивности. Состояниям за скачками сжатия отвечают точки адиабаты, расположенные левее выбранной начальной точки, за скачками разрежения – правее.

Анализ адиабаты Гюгонио показывает, что давление, температура и скорость газа после прохождения скачка сжатия неограниченно возрастают при увеличении интенсивности скачка. В это же время плотность возрастает лишь в конечное число раз, сколь бы ни была велика интенсивность скачка. Количественно увеличение плотности зависит от молекулярных свойств среды, для воздуха максимальный рост 6 раз. При уменьшении амплитуды УВ она вырождается в слабый (звуковой) сигнал.

Из условий Ренкина – Гюгонио также можно получить уравнение прямой в плоскости , p

называемой прямой Рэлея – Михельсона. Угол наклона прямой определяется значением скорости газа перед ударной волной u 0 , сечение адиабаты Гюгонио этой прямой дает параметры газа за фронтом ударной волны. Михельсон (в России) ввел это уравнение при исследовании воспламенения гремучих газовых смесей в 1890, работы британца лорда Рэлея по теории ударных волн относятся к 1910.

Скачки разрежения.

В воздухе наблюдаются только скачки уплотнения. В этом случае по отношению к среде перед ее фронтом ударной волны движется со скоростью, превышающей скорость звука в этой среде, по среде за ее фронтом волна движется с дозвуковой скоростью. Звуковые волны могут нагнать ударную волну сзади, сама же волна надвигается бесшумно. Привлечение законов термодинамики позволило теоретически обосновать это свойство ударных волн для сред с обычными термодинамическими свойствами (теорема Цемплена). Однако, в средах со специальными термодинамическими свойствами скачки разрежения возможны: известны скачки такого рода в средах с фазовыми переходами, например, пар – жидкость.

Структура ударной волны.

Типичная ширина ударной волны в воздухе – 10 –4 мм (порядка нескольких длин свободного пробега молекул). Малая толщина такой волны дает возможность во многих задачах считать ее поверхностью разрыва. Но в некоторых случаях имеет значение структура ударной волны. Такая задача представляет и теоретический интерес. Для слабых ударных волн хорошее согласие эксперимента и теории дает модель, учитывающая вязкость и теплопроводность среды. Для ударных волн достаточно большой интенсивности структура должна учитывать (последовательно) стадии установления термодинамического равновесия поступательных, вращательных, для молекулярных газов еще и колебательных степеней свободы, в определенных условиях – диссоциацию и рекомбинацию молекул, химические реакции, процессы с участием электронов (ионизацию, электронное возбуждение).

Контактные разрывы.

Ударные волны следует отличать от контактных разрывов, также являющихся поверхностями раздела сред с различными плотностями, температурами и, может быть, скоростями. Но, в отличие от ударных волн, через контактный разрыв нет протекания вещества и давление с обеих его сторон одинаково. Контактные разрывы называют также тангенциальными.

Распад произвольного разрыва.

Поверхность произвольного разрыва, разделяющая две области среды с заданными давлением, плотностью, скоростью, в последующие моменты времени в общем случае перестает существовать (распадается). В результате такого распада может возникнуть две, одна или ни одной ударной волны, а также волны разрежения (являющиеся непрерывными) и контактный разрыв, что может быть рассчитано по начальным данным. Решение этой задачи впервые было сообщено Н.Е.Кочиным (доклад 1924 на первом международном конгрессе по прикладной механике в г. Дельфте (Нидерланды), опубликовано в 1926).

Легко представить практические случаи, которые приводят к задачам такого рода, например, разрыв диафрагмы, разделяющей газы различного давления и т.д. Решение такой задачи актуально для расчета работы ударной трубы.

Ударная труба.

Простейшая ударная труба состоит из камер высокого и низкого давления, разделенных диафрагмой (рис. 2).

После разрыва диафрагмы в камеру низкого давления устремляется толкающий газ из камеры высокого давления, формируя волну сжатия, которая, быстро увеличивая свою крутизну, образует ударную волну. За ударной волной в камеру низкого давления движется контактный разрыв. Одновременно в камеру высокого давления распространяется волна разрежения.

Первые ударные трубы появились в конце 19 в., с тех пор развитие техники ударных труб позволило превратить ударные волны в самостоятельный инструмент для исследований. В ударной трубе можно получить газ, однородно нагретый до 10 000 ° К и выше. Такие возможности широко используются при изучении многих химических реакций, различных физических процессов. В астрофизических исследованиях основными данными являются спектры звезд. Точность интерпретации этих спектров определяется результатами сравнения со спектрами, полученными на ударных трубах.

С конца 1920-х стала развиваться сверхзвуковая аэродинамика. Первая сверхзвуковая аэродинамическая труба в США (в Национальном консультативном комитете по аэронавтике, NACA) была создана к 1927, в СССР – в 1931–1933 (в Центральном аэрогидродинамическом институте), это открыло новые возможности экспериментального исследования ударных волн. Сверхзвуковое течение качественно отличается от дозвукового, в первую очередь, наличием ударных волн. Возникновение ударных волн приводит к значительному повышению сопротивления движущихся тел (столь значительному, что возник термин – волновой кризис), а также к изменению действующих на эти тела тепловых нагрузок. Вблизи ударных волн эти нагрузки очень велики и, если не предприняты соответствующие меры защиты, может произойти прогорание корпуса летательного аппарата и его разрушение. Крайне важная проблема в аэродинамике – предотвращение бафтинга (появления нестационарных ударных волн у поверхности летательного аппарата). При бафтинге действие динамических и тепловых нагрузок становится переменным по времени и месту приложения, противостоять таким нагрузкам намного сложнее.

Косые и прямые ударные волны.

В поле течения ударная волна может быть перпендикулярной невозмущенному течению (прямая ударная волна) или составлять с невозмущенным течением некоторый угол (косая ударная волна). Прямые ударные волны обычно создаются в специальных экспериментальных устройствах – ударных трубах. Косые ударные волны возникают, например, при сверхзвуковом обтекании тел, при истечении газа из сверхзвуковых сопел и т.п.

Есть еще одна классификация ударных волн. Примыкающие к твердой поверхности волны носят название присоединенных, не имеющие точек соприкосновения – отошедших. Отошедшие ударные волны возникают при сверхзвуковом обтекании затупленных тел (например, сферы), присоединенные волны имеют место в случае остроконечных тел (клина, конуса); такие волны не столько тормозят течение, сколько резко разворачивают его, так что и за ударной волной течение остается сверхзвуковым.

В ряде случаев газодинамическая теория допускает оба случая течения за фронтом присоединенной волны и сверхзвуковое (в этом случае ударная волна называется слабой), и дозвуковое течение (сильная ударная волна).

Экспериментально наблюдаются только такие ударные волны.

Регулярное и маховское отражение волн.

В зависимости от угла падения ударной волны на препятствие волна может отражаться непосредственно на поверхности препятствия или на некотором расстоянии от него. Во втором случае отражение называется трехволновым, поскольку в этом случае возникает третья ударная волна, соединяющая падающую и отраженную волны с поверхностью препятствия.

Впервые зафиксированное австрийским ученым Эрнстом Махом в 1878, трехволновое отражение получило также название маховского, для отличия от двухфронтового (или регулярного) отражения.

Выполненный Махом эксперимент, позволивший обнаружить трехволновой режим отражения, заключался в следующем (рис. 5): в двух точках, расположенных на некотором расстоянии друг от друга, одновременно проскакивали две искры, порождавшие две сферических ударных волны.

Распространяясь над поверхностью, зачерненной сажей, эти волны оставляли отчетливый след точек их пересечения, начинающийся посередине между точками инициализации волн, а затем идущий по срединному перпендикуляру отрезка, соединяющего эти точки инициализации. Далее отрезок на концах разделялся на две симметрично расходящиеся линии. Полученная картина соответствует тому, что на ранней стадии взаимодействия ударные волны отражаются друг от друга так, как будто происходит отражение в регулярном режиме от воображаемой плоскости, расположенной посередине между точками инициализации волн. Затем образуется скачок Маха, соединяющий соответствующие точки кривых, приведенных на рис. 3. Поскольку на зачерненной поверхности остаются лишь траектории точек пересечения волн, Мах продемонстрировал впечатляющую проницательность, сумев расшифровать смысл полученных следов.

Задача о сильном взрыве.

К 1945 было создано мощное оружие разрушения – атомная бомба. Оценка последствий ядерного взрыва во многом связана с расчетом воздействия образовавшейся в результате взрыва ударной волны. Такая задача, называемая задачей о сильном взрыве, впервые была решена Л.И.Седовым в СССР (опубликовано в 1946), получившим точное аналитическое решение поставленной задачи (в виде конечных формул). В 1950 опубликовал свое исследование этой же задачи (с использованием приближенных численных методов) Дж. Тейлор (США).

Сходящаяся ударная волна.

Впервые задача о фокусировке ударной волны была сформулирована и решена Г.Гудерлеем в Германии (1942) и независимо Л.Д.Ландау и К.П.Станюковичем в СССР (опубликовано в 1955). По мере приближения волны к центру фокусировки происходит концентрация энергии и ударная волна усиливается. В моменты, близкие к фокусировке, волна выходит на некоторый предельный (называемый автомодельным) режим, когда предшествующие условия создания и распространения ударной волны не важны. Сходящиеся ударные волны позволяют получать гигантские давления и температуры в точке фокусировки, в настоящее время изучение таких волн – одно из перспективных направлений создания управляемого термоядерного синтеза.

Устойчивость ударной волны.

Если условия течения таковы, что его малые возмущения имеют тенденцию к росту, то со временем рост этих возмущений может привести к изменению режима течения или даже к полному его разрушению. Специальные исследования устойчивости УВ в среде с общими свойствами впервые проведены в СССР (С.П.Дьяков, 1954, и В.М.Конторович, 1957 – уточнение результатов Дьякова). Были определены области устойчивости (затухание возмущений) и неустойчивости (рост возмущений), нейтральной устойчивости (ударная волна не реагирует на возмущения), а также обнаружена область спонтанного излучения звука поверхностью ударной волны. Простые расчеты, основанные на полученных результатах, показали, что в воздухе ударная волна абсолютно устойчива. Вместе с тем, неустойчивость проявляется, например, у детонационных волн, что приводит к особенностям распространения волн такого рода: галопирующая и спиновая детонация, ячеистая структура детонационных волн.

Тенденция даже слабых волн сжатия к опрокидыванию приводит к тому, что звуковые волны переходят в слабые скачки и более уже не распространяются со звуковой скоростью – скорость слабого скачка равна полусумме скоростей звука в среде до скачка и после него. В этом сложность экспериментального определения точной скорости звука. Теория дает следующие результаты – в воздухе (при нормальных условиях) 332 м/с, в воде (при 15 ° С) 1490 м/с.

Число Маха.

Отношение скорости течения к скорости звука – важная характеристика течения и носит название числа Маха:

u – скорость газа, a – скорость звука. При сверхзвуковом течении число Маха больше единицы, при дозвуковом – меньше единицы, при течении со звуковой скоростью – равно единице.

Предложил название «число Маха» швейцарский ученый Якоб Аккерет в знак признания заслуг Э.Маха в области исследования сверхзвуковых течений.

Угол Маха.

Для источника слабых возмущений, обтекаемого сверхзвуковым потоком, наблюдается интересное явление: четко выраженные границы поля возмущений – линии Маха (рис. 6). При этом синус образованного линией Маха и направлением основного течения угла есть обратное число Маха: .

Этого и следовало ожидать, так как скорость распространения слабых возмущений поперек направления набегающего потока есть скорость звука. Чем больше скорость набегающего потока, тем уже делается угол Маха.

Взаимодействие ударных волн с пограничным слоем.

В пограничном слое, возникающем вблизи ограничивающих поток стенок, происходит торможение потока до нулевых скоростей на стенке (условие «прилипания»). Фронт ударной волны, взаимодействующей с пограничным слоем, претерпевает изменения: образуется, так называемый, l -образный скачок (лямбда-образный скачок, по сходству конфигурации такого скачка с греческой буквой лямбда, рис. 7).

При течении в канале с развитыми пограничными слоями у стенок прямой скачок заменяется Х -образным скачком, составленным двумя l -образными скачками (обычным и перевернутым). За фронтом такого скачка происходит нарастание толщины пограничного слоя, пограничный слой турбулизуется, могут образовываться другие Х -образные скачки и, в конце концов, может возникнуть ситуация, когда падение скорости потока от сверхзвуковой до дозвуковой происходит в сложной системе скачков и неодномерного течения – псевдоскачке.

Теория мелкой воды.

Сверхзвуковое течение, как оказалось, аналогично течению воды (или другой несжимаемой жидкости) в открытом водоеме, глубина которого достаточно мала («мелкая» вода) и на жидкость действует сила тяжести. Формально аналогия проявляется в том, что уравнения, описывающие соответствующие движения и газа, и воды, оказываются одинаковыми. Используя это свойство можно совершенно ясно наблюдать явления, происходящие в сверхзвуковом потоке. Например, в обычном быстротекущем ручейке отчетливо видны аналоги отошедших и присоединенных ударных волн, картины процесса возникновения ударной волны при обтекании криволинейной стенки, пересечения и отражения ударных волн, распространения возмущений от точечного источника – линий Маха, картины истечения сверхзвуковых струй в область покоящегося газа, Х -образных скачков и т.п. Впервые обратившим внимание на такую аналогию считается Д.Рябушинский (Франция, 1932).

Андрей Богданов

При взрыве фугасной бомбы вблизи нее в воздухе образуется область высокого давления, распространяющаяся затем в виде так называемой ударной волны. Свойства и особенности ударных волн представляют большой интерес, так как их действием объясняются многие разрушительные эффекты, сопровождающие взрыв. Ударные волны во многих отношениях отличаются от гораздо более известных звуковых волн. Звуковые волны представляют собой последовательность периодически повторяющихся уплотнений и разрежений среды, распространяющихся со «скоростью звука» с.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Для воздуха при нормальных температуре и давлении, как известно, с = 330 м/сек; для воды с = 1400 м/сек; для стали с = 5000 м/сек.

Если регистрировать в какой-либо точке звуковой волны изменения давления с течением времени, то будет наблюдаться картина, изображенная на рис. 1. По ординате на этом рисунке отложено избыточное давление, т. е. разность между давлением в волне и давлением при отсутствии волны. Величина избыточного давления даже для сильных звуков не превосходит обычно десятой доли атмосферы.

Аналогичные наблюдения в случае ударной волны обнаруживают совершенно другую картину (рис. 2). Ударная волна имеет чрезвычайно резкий и крутой передний фронт. Для наблюдателя, на которого набегает ударная волна, избыточное давление, равное нулю до прихода фронта, затем внезапно достигает максимального значения; дальнейшее изменение давления ясно из рисунка: оно падает и переходит в область пониженных значений В. Максимальное давление в ударной волне может достигать нескольких атмосфер, т. е. нескольких килограммов на квадратный сантиметр. При удалении от источника интенсивность волны быстро убывает (рис. 2). В отличие от случая звуковой волны, это обстоятельство объясняется не только геометрическими причинами - увеличением площади фронта волны по мере того как этот сферический фронт расходится от источника, но и в большой степени поглощением энергии волны. Это поглощение энергии связано с сильным нагреванием газа в области за волновым фронтом. Температура непосредственно за фронтом может достигать многих сотен градусов. Поэтому газ после прохождения волны светится, что может быть зафиксировано на фотопластинке.

Далее, если ударная волна распространяется во взрывчатой смеси, то, при известных условиях, она уже не затухает, так как ее энергия восстанавливается за счет теплоты, выделяемой при сгорании смеси. В этом случае говорят о «детонационной волне», или «взрывной волне».

Скорость распространения фронта ударной волны всегда больше скорости звука в данной среде и может достигать в газе значений в 2000 - 3000 м/сек.

Не останавливаясь подробнее на теории ударных волн, развивавшейся Риманом, Гюгоньо, Жуге и др., перейдем к описанию разрушительных действий, связанных с этими волнами .

Действием ударной волны в воздухе объясняется большинство «малых» эффектов, сопровождающих взрыв. Важнейшим из них является выдавливание оконных стекол. Большинство стекол разлетается при падении на них волны с избыточным давлением, меньшим одной атмосферы. Человек при таком ударе не подвергается опасности. Только давления в несколько (5-6) атмосфер, могущие иметь место вблизи разорвавшейся бомбы, способны принести существенный вред людям. Основное действие волна, проникая в грудную клетку, производит на легкие, которые при этом сильно вдавливаются.

Многие эффекты взрыва, иногда кажущиеся очень странными, объясняются условиями распространения ударных волн вдоль улицы. Подобно другим волнам, ударные волны отражаются от препятствий и, в частности, от стен домов. Поэтому в результате многократных отражений различных типов вдоль улицы бежит волна с известной периодичностью. Вдалеке от места взрыва, где интенсивность волны недостаточна для выдавливания стекол, в силу этой периодичности отдельные стекла все же разлетаются. Именно разбиваются те стекла, собственная частота колебаний которых близка к частоте волны.

За фронтом ударной волны воздух не неподвижен, а имеет некоторую скорость. Связанный с этим движением газа ветер может сбивать людей с ног, сбрасывать легкие предметы и т. п.

Третий вторичный эффект, связанный с распространением ударных волн, наблюдается в узких улицах. Волна, сжатия, распространяясь вдоль улицы, выгоняет из нее воздух. Образующееся таким образом разрежение воздуха на улице вызывает вырывание окон и дверей наружу, причем это действие волны может быть более разрушительным, чем первичный удар волнового фронта.

Весьма интересно поведение ударной волны при огибании различных предметов. Обычные звуковые волны имеют часто длину волны, равную нескольким метрам или даже десяткам метров. Такие длинные волны способны огибать препятствия, и потому позади небольших стен и домов звук, падающий на эти препятствия, слышен. Звуковые волны загибаются вокруг краев препятствий и таким образом не дают резкой звуковой «тени». Короткие звуковые, а в еще большей мере так называемые ультразвуковые волны, напротив, дают «тень» от предметов обычных размеров, так же как и световые волны . Ударная волна не имеет какой-либо определенной длины. Однако можно доказать строго математически, что часть А (рис. 2) ударной волны, в которой имеет место уплотнение воздуха, может быть представлена как результат наложения довольно коротких волн (ширина области сжатия, а следовательно и длина образующих эту область волн - порядка метра и меньше). Часть В волны, в которой имеет место разрежение, характеризуется значительно большими длинами волн. Из сказанного выше следует, что уже за сравнительно небольшие препятствия проникает лишь часть В ударной волны. Действие этой разреженной части ударной волны значительно меньше эффектов, связанных с частью А. Поэтому практически уже небольшие стенки, ямы и т. п. предохраняют от действия ударных волн. В соответствии с этим в Англии перед дверьми убежищ иногда возводится дополнительная стенка.

Выше мы говорили только об ударных волнах, распространяющихся в воздухе. Волны в некотором смысле сходного типа распространяются также в земле и других твердых телах. Их действие во многом подобно имеющему место при землетрясениях.

  • Нормирование параметров микроклимата(см. Лаб. Работу «Исследование параметров микроклимата на рабочих местах»)
  • Производственное освещение.
  • Основные светотехнические величины и единицы их измерения.
  • Измерение освещенности и других светотехнических величин (самостоятельно изучить, лаба, учебник «Охрана труда в машиностроении» под ред. Юдина) Виды и системы производственного освещения
  • Искусственное освещение
  • Светильники и их классификация
  • Нормирование освещения
  • Нормирование искусственного освещения
  • Расчёт производственного освещения Расчёт естественного освещения
  • Расчёт искусственного освещения
  • Организация условий охраны труда и отдыха, направленная на повышение работоспособности человека.
  • Рациональная организация рабочего места
  • Техническая эстетика. Требования охраны труда в производственном помещении.
  • Режимы труда и отдыха.
  • Влияние чрезвычайных ситуаций на психологическое состояние человека.
  • Опасные и вредные факторы среды обитания Окружающая среда
  • Структура и состав атмосферы.
  • Трансформация и взаимодействие загрязнений в окружающей среде. Вторичные явления.
  • Механизм образования смога:
  • Кислотные дожди
  • Разрушение озонового слоя.
  • Электромагнитные поля.
  • Ионизирующие излучения.
  • Экологический кризис.
  • Производственная среда. Пути негативного воздействия производственной среды на биосферу.
  • Производство и технические средства повышенной опасности.
  • Опасные и вредные факторы, характерные для условий труда по избранной специальности.
  • Пути негативного воздействия производственной среды на биосферу.
  • Влияние научно-технического прогресса, демографического взрыва, урбанизации на состояние со и процесс жизнедеятельности человека.
  • Масштабы и последствия негативного воздействия опасных и вредных факторов на человека и окружающую среду.
  • Анатомо-физеологические воздействия на человека опасных и вредных факторов среды обитания. Естественная система человека для защиты от вредных и опасных факторов среды обитания.
  • Рецепторы кожи.
  • Механические колебания
  • Воздействие шума на организм человека
  • Нормирование шума
  • Защита от шума
  • Защита от инфразвука и ультразвука.
  • Защита от вибрации
  • Воздействие электромагнитного поля на человека.
  • Нормирование электромагнитных полей.
  • Защита от электромагнитных полей.
  • Лазерное излучение.
  • Инфракрасное излучение.
  • Электробезопасность. Действие электрического тока на организм человека.
  • Анализ опасности поражения электрическим током в различных электрических сетях.
  • Шаговое напряжение и напряжение прикосновения
  • Классификация помещений по степеням безопасности поражении электрическим током.
  • Защитные меры в электроустановках
  • 6. Защитное заземление
  • Расчет системы защитного заземления (ргр-2) Ионизирующее излучение
  • Краткая характеристика излучений
  • Проникающая радиация и радиоактивное заражение окружающей среды
  • Воздействие радиоактивного заражения на людей и животных.
  • Общие принципы защиты от ионизирующего излучения.
  • Вредные вещества Вредные вещества, их классификация и пути поступления в организм.
  • Нормирование содержания вредных веществ в воздухе.
  • Нормирование содержания вредных веществ в воде.
  • Состав и пдк(предельная допустимая концентрация) активных веществ.
  • Некоторые значения пдк.
  • 3. Отравления и заболевания, вызываемые действием вредных веществ.
  • 4. Защита от вредных выбросов.
  • Характер распространения ударной волны в воздухе, воде и грунте. Основные параметры ударной волны.
  • Воздействие ударной волны на людей и животных.
  • Разрушения и повреждения, вызываемые действием ударной волны.
  • Общие требования к безопасности и экологичности технических средств и технологических процессов.
  • Экспертиза безопасности оборудования и технологических процессов.
  • Экологическая экспертиза проектов.
  • Опасные и чрезвычайные ситуации Классификация чрезвычайных ситуаций. Чрезвычайные ситуации природного происхождения.
  • Стихийные бедствия.
  • Землетрясения.
  • Наводнения
  • Оползни.
  • Снежные лавины
  • Производственные аварии. Современные средства поражения
  • Ядерное оружие.
  • Высотный ядерный взрыв.
  • Химическое оружие.
  • Бактериологическое оружие.
  • Обычные средства поражения.
  • Взрывы и пожаробезопасность. Теоретические основы горения.
  • Основные показатели пожарной безопасности.
  • 1. Температура вспышки.
  • 2. Температура воспламенения.
  • 3. Температура самовоспламенения.
  • Оценка пожарной опасности предприятий.
  • Основные мероприятия по пожарной профилактике.
  • Огнестойкость зданий и сооружений.
  • Некоторые мероприятия по профилактике пожара.
  • Система и аппараты пожаротушения.
  • Основы законодательства рф об охране труда.
  • Ударная волна. Источники образования ударной волны.

    Ударная волна -это область сжатия среды, которая в виде сферического слоя распространяется со сверхзвуковой скоростью во все стороны от источника ее образования. В зависимости от того, в какой среде распространяется ударная волна (в воздухе, воде или грунте), она соответственно называется воздушной ударной волной, ударной волной в воде, сейсмовзрывной волной в грунте.

    Различают ударную волну природного и антропогенного происхождения. К природным волнам относятся ударные волны, вызываемые извержением вулканов, землетрясениями, ураганами, смерчами, паданием метеоритов и т.д. Кантропогенным относятся ударные волны, которые возникают в результате взрывов ядерных устройств, химических взрывов, взрывов на объектах атомной энергетики, взрывов на предприятиях нефтеперерабатывающей и нефтехимической промышленности, взрывов веществ при их перевозке на транспорте, взрывов газовоздушных смесей или смесей горючих жидкостей и газов с воздухом. На данный момент широко изучено действие ударной волны при взрыве ядерных устройств. В этом случае проявляются все стороны поражающего действия ударной волны и наблюдаются все ее основные параметры.

    Ударная волна является основным поражающим фактором взрывов ядерных устройств (ядерных взрывов). Большинство разрушений и повреждений зданий и сооружений, оборудования промышленных объектов, а также поражение людей, как правило, обусловлено действием ударной волны.

    Наряду с ударными волнами другими поражающими факторами взрыва ядерных устройств являются световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс . Распределение энергии между поражающими факторами зависит от вида взрыва и условий, в которых он происходит. Приназемном и воздушном взрыве до 50% расходуется на образование избыточного давления ударной волны, около 30% на световое излучение, до 15% на радиоактивное заражение и около 5% на проникающую радиацию.

    Характер распространения ударной волны в воздухе, воде и грунте. Основные параметры ударной волны.

    Воздушная ударная волна образуется за счет огромной энергии, выделяемой в зоне ядерной реакции, где температура достигает 10000С, а давление - 10 5 -10 6 Па.

    Раскаленные пары и газы расширяются, производя тем самым резкий удар по окружающим слоям воздуха, в результате чего происходит сжатие этих воздушных слоев до высокого давления и большой плотности, а также нагрев до высоких температур. Сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от места взрыва, образуя тем самым ударную волну. Расширение раскаленных газов действует на небольших расстояниях от центра взрыва. На более значительных расстояниях действует воздушная ударная волна (в основном). Возле центра взрыва скорость ударной волны значительно превышает скорость звуковых волн. С увеличением расстояния от центра взрыва скорость ударной волны быстро убывает, а действие самой ударной волны быстро ослабевает. На больших расстояниях она, как правило, переходит в звуковую волну. Воздушная ударная волна при взрывах средней мощности проходит примерно 1000 м за 1.4с, 2000 м за 4с, 3000м за 7с и 5000 м за 12с.

    На графике показан характер изменения давления с течением времени в какой-либо фиксированной точке пространства.

    С приходом в? точку фронта ударной волны давление воздуха резко возрастает, также резко возрастает плотность воздуха, температура и скорость внешней среды.

    После того, как фронт ударной волны пройдет данную точку пространства, давление в ней постепенно снижается и через некоторый промежуток времени становится равным атмосферному Р 0 . Образовавшийся слой сжатого воздуха являетсяфазой сжатия (τ+ ) , в этот период времени ударная волна обладает наибольшим разрушающим действием. По мере удаления от центра взрыва давление во фронте ударной волны уменьшается, а толщина слоя сжатия со временем возрастает.

    Последнее происходит за счет привлечения новых масс воздуха. Далее давление становится ниже атмосферного, воздух начинает двигаться в направлении, противоположном распространению ударной волны, то есть к центру взрыва. Эта зона пониженного давления называется фазой разряжения (τ- ). Вфазе разряжения ударная волна производит гораздо меньшее разрушение, чем в фазе сжатия, так как максимальное отрицательное давление-ΔР значительно меньше максимального избыточного давления во фронте ударной волны. После окончания периода действия фазы разрушения, когда давление достигает значения атмосферного, прекращается движение фаз воздуха, и следовательно, разрушающего воздействия ударной волны. Непосредственно за фронтом ударной волны в области сжатия движутся массы воздуха.

    Вследствие торможения этих масс воздуха при встрече с преградой возникает давление скоростного напора. Основными параметрами ударной волны, определяющими ее поражающее действие, являются

      избыточное давление во фронте ΔР Ф ,

      скоростной напор ΔР ск ,

      время действия Т ув .

    Избыточное давление во фронте ударной волны это разница между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед фронтом.

    ΔР Ф Ф 0

    Единицей измерения избыточного давления в системе Си является Па. Значение избыточного давления в какой-либо точке зависит от расстояния до центра взрыва, мощности и вида взрыва.

    Скоростной напор -это динамические нагрузки, создаваемые потоком воздуха во фронте ударной волны. Как и избыточное давление, измеряется в Па. Скоростной напор зависит от плотности воздуха, скорости движения воздушных масс и связан с избыточным давлением. Разрушающее действие скоростного напора сказывается в областях с избыточным давлением> 50 кПа.

    Время действия УВ – это время действия избыточного давления. Зависит, главным образом, от избыточного давления и скорости воздуха.

    Определяющим параметром при характеристике взрыва является образующаяся и распространяющаяся в окружающем пространстве воздушная ударная волна.

    Рассмотрим облако взрывоопасной смеси в окружающем воздушном пространстве. До момента возгорания давление в объеме облака равно атмосферному. При сгорании (взрыве) облака в его объеме давление возрастает, преграды с окружающей средой нет, и область высокого давления увеличивается в объеме, а давление внутри нее уменьшается (рис. 1). Распространение области сжатия воздуха происходит со сверхзвуковой скоростью и получило название воздушной ударной волны - ВУВ. Поверхность, которая отделяет сжатый воздух от невозмущенного, называется фронтом ударной волны.

    При прохождении фронта ударной волны через воздух в очень узкой зоне скачком возрастают давление, температура и плотность, а воздух за фронтом начинает двигаться в сторону области пониженного давления. Скорость движения воздуха меньше скорости движения фронта ВУВ. После того как фронт ударной волны проходит данную точку пространства, давление в ней постепенно снижается до атмосферного. В дальнейшем давление продолжает уменьшаться и становится ниже атмосферного, а воздух начинает двигаться в обратную сторону. Постепенно давление выравнивается с атмосферным и действие воздушной ударной волны в данной точке прекращается (рис. 2). Время, в течение которого давление превышает атмосферное, называется фазой сжатия, а время действия пониженного давления - фазой разрежения. Основные разрушения происходят в фазе сжатия, поэтому действие фазы разрежения обычно не учитывается.

    Ударная волна имеет два основных отличия от звуковой волны:

    • - параметры среды в ней (давление, температура, плотность) изменяются практически скачком;
    • - скорость ее распространения превышает скорость звука в невозмущенной среде.

    Рис. 1. - Давление во фронте воздушной ударной волны как функция расстояния от места взрыва:

    Рис. 2.

    Рассмотрим параметры ВУВ.

    До прихода волны давление в точке определялось атмосферным давлением P 0 . В момент прихода фронта волны давление возрастает на величину, равную P ф. После скачка давление начинает падать и через промежуток времени 0 + достигает величины P 0 . Дальнейшее снижение давления приводит к образованию в рассматриваемой точке разрежения с амплитудой P -, после чего рост давления возобновляется и оно снова достигает величины P 0 . Период 0 + называется фазой сжатия.

    По мере удаления от места взрыва происходит постепенное “затухание” ударной волны. При этом уменьшаются амплитуды P ф и P - , уменьшаются крутизна скачка и крутизна спада давления, увеличиваются интервалы 0 + и 0 - , уменьшается скорость распространения ударной волны и она постепенно трансформируется в звуковую. Скорость “затухания” ударной волны зависит от состояния среды, в которой эта волна распространяется, и от расстояния до места взрыва.

    Поражающее действие ВУВ определяется следующими параметрами.

    Первым параметром, определяющим поражающее действие ВУВ, является избыточное давление P ф.

    Рассмотрим, во-первых, величину P ф. Энергетическое содержание ВВ, в частности ГВС, одинаково независимо от режима горения, однако скорость взрывчатых превращений разная при дефлаграции и при детонации, поэтому при детонации объем горящей ГВС не успевает увеличиться и давление возрастает до значительно больших значений, чем при дефлаграции.

    Рис. 3. - Формы фронта ВУВ при дефлаграционном и детонационном взрывах:

    Скачок давления в месте взрыва (а, следовательно, и во фронте ВУВ) при детонационных взрывах ГВС на открытом воздухе может достигать 2 Мпа. При взрывах конденсированных ВВ это давление может достигать значительно более высоких значений, измеряемых даже Гпа.

    Во-вторых, разница в скорости процессов приводит к тому, что продолжительность нарастания давления (наклон фронта) разная. При детонации продолжительность нарастания давления ~ 10 -3 c для воздушных смесей и ~ 10 -5 для конденсированных ВВ, а при дефлаграции ~ 0,1-0,2 с.

    Формы фронта ВУВ при разных режимах взрывного горения показаны на рис. 3.

    Вторым параметром ВУВ, определяющим ее поражающее действие, является импульс давления i. Импульс характеризует суммарное воздействие избыточного давления за время 0 + . Он числено равен площади под кривой избыточного давления на рис. 2.

    Поражающее действие ВУВ характеризуется также давлением скоростного напора P ск воздуха. Скоростной напор возникает вследствие того, что частички воздуха во всех точках фронта ударной волны совершают резкое смещение по направлению от центра взрыва, а затем в обратную сторону. Тело, находящееся на пути смещения частиц воздуха, испытывает силовое воздействие.

    Скоростной напор вызывает отбрасывание предметов, оказавшихся на пути распространения ударной волны, т. е., оказывает на них метательное воздействие.

    В результате метательного воздействия незакрепленные предметы, а также люди могут быть отброшены на расстояние в несколько метров и, вследствие этого, получить повреждения и травмы по своей тяжести соизмеримые с последствиями воздействия избыточного давления ВУВ. Скоростной напор ВУВ приводит к разрушению (слому) сооружений, имеющих значительную протяженность по сравнению с поперечным сечением (столбы электропередач, заводские трубы, опоры и т. п.)

    Перечисленные параметры ударной волны (давление, импульс, скоростной напор) являются основными, но не единственными параметрами, определяющими ее поражающее действие. Так при встрече ударной волны с препятствием, например со стеной здания, давление вблизи от отражающей поверхности препятствия возрастает в несколько раз. Степень роста амплитуды зависит от угла наклона отражающей поверхности к направлению распространения ударной волны и от состояния среды у отражающей поверхности, от других величин.

    Основными параметрами воздушной ударной волны будем считать:

    • - избыточное давление во фронте волны, Р ф;
    • - время действия давления (фазы сжатия);
    • - скорость распространения ударной волны, v;
    • - давление скоростного напора Р ск.

    Ударная волна ядерного взрыва.

    Основные параметры, характеризующие ударную волну ЯВ, для заряда мощностью 30кт приведены в таблице.

    В зависимости от высоты ЯВ распространение воздушной ударной волны имеет свои особенности.

    При наземном взрыве воздушная ударная волна имеет форму полусферы с центром в точке взрыва ядерного боеприпаса. Значения P ф в этом случае будут примерно удваиваться по сравнению с воздушным взрывом.

    При воздушном взрыве ударная волна, достигая поверхности земли, отражается от нее. Форма фронта отраженной волны близка к полусфере с центром в точке встречи ударной волны с поверхностью земли.

    На близких расстояниях от проекции эпицентра на поверхность земли угол наклона падающей волны мал и точки, из которых исходят отраженные волны, перемещаются вдоль поверхности земли. Эта зона называется зоной регулярного отражения и ее радиус на поверхности земли R э примерно соответствует высоте воздушного взрыва H, т. е., R э =H.

    Таблица - Параметры ударной волны ЯВ мощностью 30 кт:

    На расстояниях R э >H в результате того, что отраженная волна движется в воздухе уже прогретом падающей волной, она имеет большую скорость и постепенно "набегает" на падающую волну, образуя головную ударную волну. Сложение волн усиливает избыточное давление во фронте головной волны. Коэффициент усиления составляет от 1,6 до 3 крат и зависит от состояния приземного слоя воздуха. Наибольшее повышение давления наблюдается при взрывах зимой, когда приземный слой воздуха почти не прогревается световым излучением.

    При прогреве приземного слоя воздуха, например за счет его запыления, скачок давления во фронте головной волны уменьшается, но увеличивается время фазы сжатия и скоростной напор движущихся частиц воздуха. Это приводит к усилению метательного действия ударной волны.

    На распространение ударной волны при ЯВ могут оказать существенное влияние: рельеф местности, характер застройки, лесные массивы, метеорологические условия. На расстояниях близких к месту взрыва амплитудные значения P Ф очень велики и к тому моменту, когда они снижаются до значений, указанных в таблице, т. е., до значений, представляющих практический интерес с точки зрения анализа степени разрушающего воздействия ударной волны ЯВ, зависимость P(t) успевает видоизмениться.

    Эти изменения состоят в увеличении, снижении скорости роста давления во фронте ударной волны и более плавному падению давления за фронтом волны. В связи с этими изменениями приведенным в таблице значениям P Ф для ЯВ соответствует больший удельный импульс, чем для аналогичных значений давления при взрыве конденсированного ВВ. Поэтому ударную волну ЯВ иногда называют “длинной волной”.

    Поражающее действие взрыва.

    Поражающими факторами при взрывах являются:

    • - прямое воздействие фронта ударной волны;
    • - так называемые вторичные поражающие факторы, определяемые воздействием обломков разрушающихся зданий и сооружений, осколков породы или оболочки заряда и т. д.;
    • - сейсмическое воздействие подземных взрывов.