В каком веществе наблюдается металлическая связь. Металлическая и водородная химические связи. Основные характеристики ковалентной связи

Металлическая связь. Свойства металлической связи.

Металлическая связь - химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединœений.

Механизм металлической связи

Во всœех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента͵ удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. По этой причине в большинстве случаев проявляются высокие координационные числа (к примеру, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. В случае если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всœех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объёмно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объёмно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объёмно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома - в средней плоскости призмы. Такую упаковку атомов имеют металлы:Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой – металлической связью.

Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинœетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всœему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. В случае если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала:данный поток электронов, движущихся в одном направлении, и представляет собой всœем знакомый электрический ток.

Металлическая связь. Свойства металлической связи. - понятие и виды. Классификация и особенности категории "Металлическая связь. Свойства металлической связи." 2017, 2018.

Ионная связь

(использованы материалы сайта http://www.hemi.nsu.ru/ucheb138.htm)

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl.

Из электронных формул атомов

Na 1s 2 2s 2 2p 6 3s 1 и

Cl 1s 2 2s 2 2p 6 3s 2 3p 5

видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия

Na + 1s 2 2s 2 2p 6 ,

а электронная конфигурация аниона хлора

Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6).

Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Характер химической связи часто находит отражение в агрегатном состоянии и физических свойствах вещества. Такие ионные соединения, как хлорид натрия NaCl твердые и тугоплавкие потому, что между зарядами их ионов "+" и "–" существуют мощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько.

Строение кристалла поваренной соли NaCl.

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора. Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию.

Притянутые друг к другу электростатическими силами, ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если хлорид натрия расплавить и продолжать нагревать в вакууме, то он испаряется, образуя двухатомные молекулы NaCl . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной, поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной, так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

Металлическая связь

По-другому устроены металлические кристаллы. Если рассмотреть кусочек металлического натрия, то обнаружится, что внешне он сильно отличается от поваренной соли. Натрий - мягкий металл, легко режется ножом, расплющивается молотком, его можно без труда расплавить в чашечке на спиртовке (температура плавления 97,8 о С). В кристалле натрия каждый атом окружен восемью другими такими же атомами.

Строение кристалла металлического Na.

Из рисунка видно, что атом Na в центре куба имеет 8 ближайших соседей. Но это же можно сказать и о любом другом атоме в кристалле, поскольку все они одинаковы. Кристалл состоит из "бесконечно" повторяющихся фрагментов, изображенных на этом рисунке.

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ».

Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном.

Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

Металлический кристалл выглядит достаточно простым, но на самом деле его электронное устройство сложнее, чем у кристаллов ионных солей. На внешней электронной оболочке элементов-металлов недостаточно электронов для образования полноценной "октетной" ковалентной или ионной связи. Поэтому в газообразном состоянии большинство металлов состоит из одноатомных молекул, (т.е. отдельных, не связанных между собой атомов). Типичный пример - пары ртути. Таким образом, металлическая связь между атомами металлов возникает только в жидком и твердом агрегатном состоянии.

Описать металлическую связь можно следующим образом: часть атомов металла в образующемся кристалле отдают в пространство между атомами свои валентные электроны (у натрия это...3s1), превращаясь в ионы. Поскольку все атомы металла в кристалле одинаковы, каждый из них имеет равные с другими шансы потерять валентный электрон.

Иными словами, переход электронов между нейтральными и ионизированными атомами металла происходит без затрат энергии. Часть электронов при этом всегда оказывается в пространстве между атомами в виде "электронного газа".

Эти свободные электроны, во-первых, удерживают атомы металла на определенном равновесном расстоянии друг от друга.

Во-вторых, они придают металлам характерный "металлический блеск" (свободные электроны могут взаимодействовать с квантами света).

В-третьих, свободные электроны обеспечивают металлам хорошую электропроводность. Высокая теплопроводность металлов тоже объясняется наличием свободных электронов в межатомном пространстве - они легко "откликаются" на изменения энергии и способствуют ее быстрому переносу в кристалле.

Упрощенная модель электронного строения металлического кристалла.

******** На примере металла натрия рассмотрим природу металлической связи с точки зрения представлений об атомных орбиталях. У атома натрия, как и у многих других металлов, имеется недостаток валентных электронов, зато имеются свободные валентные орбитали. Единственный 3s-электрон натрия способен перемещаться на любую из свободных и близких по энергии соседних орбиталей. При сближении атомов в кристалле внешние орбитали соседних атомов перекрываются, благодаря чему отданные электроны свободно перемещаются по всему кристаллу.

Однако "электронный газ" вовсе не беспорядочен, как может показаться. Свободные электроны в металлическом кристалле находятся на перекрывающихся орбиталях и в какой-то мере обобществляются, образуя подобие ковалентных связей. У натрия, калия, рубидия и других металлических s-элементов обобществленных электронов просто мало, поэтому их кристаллы непрочные и легкоплавкие. С увеличением числа валентных электронов прочность металлов, как правило, возрастает.

Таким образом, металлическую связь склонны образовывать элементы, атомы которых на внешних оболочках имеют мало валентных электронов. Эти валентные электроны, осуществляющие металлическую связь, обобществлены настолько, что могут перемещаться по всему металлическому кристаллу и обеспечивают высокую электропроводность металла.

Кристалл NaCl не проводит электрический ток, потому что в пространстве между ионами нет свободных электронов. Все электроны, отданные атомами натрия, прочно удерживают около себя ионы хлора. В этом одно из существенных отличий ионных кристаллов от металлических.

То, что вы теперь знаете о металлической связи, позволяет объяснить и высокую ковкость (пластичность) большинства металлов. Металл можно расплющить в тонкий лист, вытянуть в проволоку. Дело в том, что отдельные слои из атомов в кристалле металла могут относительно легко скользить один по другому: подвижный "электронный газ" постоянно смягчает перемещение отдельных положительных ионов, экранируя их друг от друга.

Разумеется, ничего подобного нельзя сделать с поваренной солью, хотя соль - тоже кристаллическое вещество. В ионных кристаллах валентные электроны прочно связаны с ядром атома. Сдвиг одного слоя ионов относительно другого приводит к сближению ионов одинакового заряда и вызывает сильное отталкивание между ними, в результате чего происходит разрушение кристалла (NaCl - хрупкое вещество).


Сдвиг слоев ионного кристалла вызывает появление больших сил отталкивания между одноименными ионами и разрушение кристалла.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества

163120 0

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков

Все известные на сегодняшний день химические элементы, расположенные в таблице Менделеева, подразделяются условно на две большие группы: металлы и неметаллы. Для того чтобы они стали не просто элементами, а соединениями, химическими веществами, могли вступать во взаимодействие друг с другом, они должны существовать в виде простых и сложных веществ.

Именно для этого одни электроны стараются принять, а другие - отдать. Восполняя друг друга таким образом, элементы и образуют различные химические молекулы. Но что позволяет им удерживаться вместе? Почему существуют вещества такой прочности, разрушить которую неподвластно даже самым серьезным инструментам? А другие, наоборот, разрушаются от малейшего воздействия. Все это объясняется образованием различных типов химической связи между атомами в молекулах, формированием кристаллической решетки определенного строения.

Виды химических связей в соединениях

Всего можно выделить 4 основных типа химических связей.

  1. Ковалентная неполярная. Образуется между двумя одинаковыми неметаллами за счет обобществления электронов, формирования общих электронных пар. В образовании ее принимают участие валентные неспаренные частицы. Примеры: галогены, кислород, водород, азот, сера, фосфор.
  2. Ковалентная полярная. Образуется между двумя разными неметаллами либо между очень слабым по свойствам металлом и слабым по электроотрицательности неметаллом. В основе также общие электронные пары и перетягивание их к себе тем атомом, сродство к электрону которого выше. Примеры: NH 3, SiC, P 2 O 5 и прочие.
  3. Водородная связь. Самая нестойкая и слабая, формируется между сильно электроотрицательным атомом одной молекулы и положительным другой. Чаще всего это происходит при растворении веществ в воде (спирта, аммиака и так далее). Благодаря такой связи могут существовать макромолекулы белков, нуклеиновых кислот, сложных углеводов и так далее.
  4. Ионная связь. Формируется за счет сил электростатического притяжения разнозаряженных ионов металлов и неметаллов. Чем сильнее различие по данному показателю, тем ярче выражен именно ионный характер взаимодействия. Примеры соединений: бинарные соли, сложные соединения - основания, соли.
  5. Металлическая связь, механизм образования которой, а также свойства, будут рассмотрены дальше. Формируется в металлах, их сплавах различного рода.

Существует такое понятие, как единство химической связи. В нем как раз и говорится о том, что нельзя каждую химическую связь рассматривать эталонно. Они все лишь условно обозначенные единицы. Ведь в основе всех взаимодействий лежит единый принцип - электронностатическое взаимодействие. Поэтому ионная, металлическая, ковалентная связь и водородная имеют единую химическую природу и являются лишь граничными случаями друг друга.

Металлы и их физические свойства

Металлы находятся в подавляющем большинстве среди всех химических элементов. Это объясняется их особыми свойствами. Значительная часть из них была получена человеком ядерными реакциями в лабораторных условиях, они являются радиоактивными с небольшим периодом полураспада.

Однако большинство - это природные элементы, которые формируют целые горные породы и руды, входят в состав большинства важных соединений. Именно из них люди научились отливать сплавы и изготавливать массу прекрасных и важных изделий. Это такие, как медь, железо, алюминий, серебро, золото, хром, марганец, никель, цинк, свинец и многие другие.

Для всех металлов можно выделить общие физические свойства, которые объясняет схема образования металлической связи. Какие же это свойства?

  1. Ковкость и пластичность. Известно, что многие металлы можно прокатать даже до состояния фольги (золото, алюминий). Из других получают проволоку, металлические гибкие листы, изделия, способные деформироваться при физическом воздействии, но тут же восстанавливать форму после прекращения его. Именно эти качества металлов и называют ковкостью и пластичностью. Причина этой особенности - металлический тип связи. Ионы и электроны в кристалле скользят относительно друг друга без разрыва, что и позволяет сохранять целостность всей структуры.
  2. Металлический блеск. Это также объясняет металлическая связь, механизм образования, характеристики ее и особенности. Так, не все частицы способны поглощать или отражать световые волны одинаковой длины. Атомы большинства металлов отражают коротковолновые лучи и приобретают практически одинаковую окраску серебристого, белого, бледно-голубоватого оттенка. Исключениями являются медь и золото, их окраска рыже-красная и желтая соответственно. Они способны отражать более длинноволновое излучение.
  3. Тепло- и электропроводность. Данные свойства также объясняются строением кристаллической решетки и тем, что в ее образовании реализуется металлический тип связи. За счет "электронного газа", движущегося внутри кристалла, электрический ток и тепло мгновенно и равномерно распределяются между всеми атомами и ионами и проводятся через металл.
  4. Твердое агрегатное состояние при обычных условиях. Здесь исключением является лишь ртуть. Все остальные металлы - это обязательно прочные, твердые соединения, равно как и их сплавы. Это также результат того, что в металлах присутствует металлическая связь. Механизм образования такого типа связывания частиц полностью подтверждает свойства.

Это основные физические характеристики для металлов, которые объясняет и определяет именно схема образования металлической связи. Актуален такой способ соединения атомов именно для элементов металлов, их сплавов. То есть для них в твердом и жидком состоянии.

Металлический тип химической связи

В чем же ее особенность? Все дело в том, что такая связь формируется не за счет разнозаряженных ионов и их электростатического притяжения и не за счет разности в электроотрицательности и наличия свободных электронных пар. То есть ионная, металлическая, ковалентная связь имеют несколько разную природу и отличительные черты связываемых частиц.

Всем металлам присущи такие характеристики, как:

  • малое количество электронов на (кроме некоторых исключений, у которых их может быть 6,7 и 8);
  • большой атомный радиус;
  • низкая энергия ионизации.

Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство металлов и их сплавов.

Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.

Где еще реализуется металлическая связь? Примеры веществ:

  • металлы в виде простых структур;
  • все сплавы металлов друг с другом;
  • все металлы и их сплавы в жидком и твердом состоянии.

Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

Металлическая связь: механизм образования

Если рассматривать его в общем виде, то основные моменты мы уже обозначили выше. Наличие свободных и электронов, легко отрывающихся от ядра вследствие малой энергии ионизации, - вот главные условия для формирования данного типа связи. Таким образом, получается, что она реализуется между следующими частицами:

  • атомами в узлах кристаллической решетки;
  • свободными электронами, которые были у металла валентными;
  • ионами в узлах кристаллической решетки.

В итоге - металлическая связь. Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

Сами кристаллы могут иметь разную форму. Это зависит от конкретного вещества, с которым мы имеем дело.

Типы кристаллов металлов

Данная структура металла или его сплава характеризуется очень плотной упаковкой частиц. Ее обеспечивают ионы в узлах кристалла. Сами по себе решетки могут быть разных геометрических форм в пространстве.

  1. Объемноцентрическая кубическая решетка - щелочные металлы.
  2. Гексагональная компактная структура - все щелочноземельные, кроме бария.
  3. Гранецентрическая кубическая - алюминий, медь, цинк, многие переходные металлы.
  4. Ромбоэдрическая структура - у ртути.
  5. Тетрагональная - индий.

Чем и чем ниже он располагается в периодической системе, тем сложнее его упаковка и пространственная организация кристалла. При этом металлическая химическая связь, примеры которой можно привести для каждого существующего металла, является определяющей при построении кристалла. Сплавы имеют очень разнообразные организации в пространстве, некоторые из них до сих пор еще не до конца изучены.

Характеристики связи: ненаправленность

Ковалентная и металлическая связь имеют одну очень ярко выраженную отличительную черту. В отличие от первой, металлическая связь не является направленной. Что это значит? То есть электронное облако внутри кристалла движется совершенно свободно в его пределах в разных направлениях, каждый из электронов способен присоединяться к абсолютно любому иону в узлах структуры. То есть взаимодействие осуществляется по разным направлениям. Отсюда и говорят о том, что металлическая связь - ненаправленная.

Механизм ковалентной связи подразумевает образование общих электронных пар, то есть облаков перекрывания атомов. Причем происходит оно строго по определенной линии, соединяющей их центры. Поэтому говорят о направленности такой связи.

Насыщаемость

Данная характеристика отражает способность атомов к ограниченному или неограниченному взаимодействию с другими. Так, ковалентная и металлическая связь по этому показателю опять же являются противоположностями.

Первая является насыщаемой. Атомы, принимающие участие в ее образовании, имеют строго определенное количество валентных внешних электронов, принимающих непосредственное участие в образовании соединения. Больше, чем есть, у него электронов не будет. Поэтому и количество формируемых связей ограничено валентностью. Отсюда насыщаемость связи. Благодаря данной характеристике большинство соединений имеет постоянный химический состав.

Металлическая и водородная связи, напротив, ненасыщаемые. Это объясняется наличием многочисленных свободных электронов и орбиталей внутри кристалла. Также роль играют ионы в узлах кристаллической решетки, каждый из которых может стать атомом и снова ионом в любой момент времени.

Еще одна характеристика металлической связи - делокализация внутреннего электронного облака. Она проявляется в способности небольшого количества общих электронов связывать между собой множество атомных ядер металлов. То есть плотность как бы делокализуется, распределяется равномерно между всеми звеньями кристалла.

Примеры образования связи в металлах

Рассмотрим несколько конкретных вариантов, которые иллюстрируют, как образуется металлическая связь. Примеры веществ следующие:

  • цинк;
  • алюминий;
  • калий;
  • хром.

Образование металлической связи между атомами цинка: Zn 0 - 2e - ↔ Zn 2+ . Атом цинка имеет четыре энергетических уровня. Свободных орбиталей, исходя из электронного строения, у него 15 - 3 на р-орбитали, 5 на 4 d и 7 на 4f. Электронное строение следующее: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 0 4d 0 4f 0 , всего в атоме 30 электронов. То есть две свободные валентные отрицательные частицы способны перемещаться в пределах 15 просторных и никем не занятых орбиталей. И так у каждого атома. В итоге - огромное общее пространство, состоящее из пустующих орбиталей, и небольшое количество электронов, связывающих всю структуру воедино.

Металлическая связь между атомами алюминия: AL 0 - e - ↔ AL 3+ . Тринадцать электронов атома алюминия располагаются на трех энергетических уровнях, которых им явно хватает с избытком. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 1 3d 0 . Свободных орбиталей - 7 штук. Очевидно, что электронное облако будет небольшим по сравнению с общим внутренним свободным пространством в кристалле.

Металлическая связь хрома. Данный элемент особый по своему электронному строению. Ведь для стабилизации системы происходит провал электрона с 4s на 3d орбиталь: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 4p 0 4d 0 4f 0 . Всего 24 электрона, из которых валентных получается шесть. Именно они уходят в общее электронное пространство на образование химической связи. Свободных орбиталей 15, то есть все равно намного больше, чем требуется для заполнения. Поэтому хром - также типичный пример металла с соответствующей связью в молекуле.

Одним из самых активных металлов, реагирующих даже с обычной водой с возгоранием, является калий. Чем объясняются такие свойства? Опять же во многом - металлическим типом связи. Электронов у этого элемента всего 19, но вот располагаются они аж на 4 энергетических уровнях. То есть на 30 орбиталях разных подуровней. Электронное строение: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 0 4p 0 4d 0 4f 0 . Всего два с очень низкой энергией ионизации. Свободно отрываются и уходят в общее электронное пространство. Орбиталей для перемещения на один атом 22 штуки, то есть очень обширное свободное пространство для "электронного газа".

Сходство и различие с другими видами связей

В целом данный вопрос уже рассматривался выше. Можно только обобщить и сделать вывод. Главными отличительными от всех других типов связи чертами именно металлических кристаллов являются:

  • несколько видов частиц, принимающих участие в процессе связывания (атомы, ионы или атом-ионы, электроны);
  • различное пространственное геометрическое строение кристаллов.

С водородной и ионной связью металлическую объединяет ненасыщаемость и ненаправленность. С ковалентной полярной - сильное электростатическое притяжение между частицами. Отдельно с ионной - тип частиц в узлах кристаллической решетки (ионы). С ковалентной неполярной - атомы в узлах кристалла.

Типы связей в металлах разного агрегатного состояния

Как мы уже отмечали выше, металлическая химическая связь, примеры которой приведены в статье, образуется в двух агрегатных состояниях металлов и их сплавов: твердом и жидком.

Возникает вопрос: какой тип связи в парах металлов? Ответ: ковалентная полярная и неполярная. Как и во всех соединениях, находящихся в виде газа. То есть при длительном нагревании металла и перевода его из твердого состояния в жидкое связи не рвутся и кристаллическая структура сохраняется. Однако когда речь заходит о переводе жидкости в парообразное состояние, кристалл разрушается и металлическая связь преобразуется в ковалентную.

Цель урока

  • Дать представление о металлической химической связи.
  • Научится записывать схемы образования металлической связи.
  • Ознакомится с физическими свойствами металлов.
  • Научится четко разделять виды химических связей .

Задачи урока

  • Узнать, как взаимодействуют между собой атомы металлов
  • Определить, каким образом влияет металлическая связь на свойства образованных ею веществ

Основные термины:

  • Электроотрицательность - химическое свойство атома, которое является количественной характеристикой способности атома в молекуле притягивать к себе общие электронные пары.
  • Химическая связь -явление взаимодействия атомов, из-за перекрытия электронных облаков взаимодействующих атомов.
  • Металическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.
  • Ковалентная связь - химическая связь, образуется с помощью перекрытия пары валентных электроннов. Обеспечивающие связь электроны называются общей электронной парой. Бывает 2-х видов: полярная и не полярная.
  • Ионная связь - химическая связь,которая образуется между атомами неметалов, при которой общая электронная пара переходит к атому с большей электроотрицательностью. В итоге атомы притягиваются, как разноименно заряженные тела.
  • Водородная связь - химическая связь между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

    ХОД УРОКА

Металлическая химическая связь

Определите элементы ставшие не в ту «очередь».Почему?
Ca Fe P K Al Mg Na
Какие элементы из таблицы Менделеева называются металлами?
Сегодня мы узнаем какие свойства есть у металлов, и как они зависят от связи которая образуется между йонами металов.
Для начала вспомним месторасполажения металлов в периодической системе?
Металлы как мы все знаем обычно существуют не в виде изолированных атомов, а в форме куска, слитка или металлического изделия. Выясним, что собирает атомы металла в целостном объеме.

На примере мы видим кусок золота. И кстати уникальным металлом является золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой нончайший лист фольги почти прозрачный и имеет зелёный оттенок просвете. В итоге из слитка золота размером со спичечный коробок можно получить тонкую фольгу, которая покроет площадь тенисного корта.
В химическом отношении все металы характеризуются легкостью отдачи валентных электронов, и как следствие образование положительно заряженных ионов и проявлять только положительную окисленность. Именно поэтому металы в свободном состоянии являются востановителями. Общей особенностью атомов металов являются большие размеры по отношению к неметалам. Внешние эллектроны находятся на больших расстояниях от ядра и поэтому слабо с ним связаны, следовательно легко отрываются.
Атомы большего колличества металлов на внешнем уровне имеют маленькое колличество электронов – 1,2,3. Эти электроны легко отрываются и атомы металлов становятся ионами.
Ме0 – n ē ⇆ Men+
атомы метала – електроны внешн. орбиты ⇆ ионы метала

Таким образом оторвавшиеся электроны могут перемещатся от одного иона к другому тоесть становятся свободными, и как бы связывая их в единое целое.Поэтому получается, что все оторвавшиеся электроны евляются общими, так как нельзя понять какой эллектрон принадлежит какому из атомов металла.
Электроны могут обьединятся с катионами, тогда временно образуются атомы, от которых сопять потом отрываются электроны. Этот процесс происходит постоянно и без остановки. Получается, что в объеме металла атомы непрерывно превращаются в ионы и наоборот. При этом небольшое число общих электронов связывает большое число атомов и ионов металла. Но важно, что число электронов в металле равно общему заряду положительных ионов, тоесть получается, что в целом металл остается электронейтральным.
Такой процесс представляют как модель - ионы металла находятся в облаке из электронов. Такое электронное облако называют «электронным газом».

Вот например на данной картинке мы видим как электрончики двигаются среди неподвижныхйонов внутри кристалической решетки метала.

Рис. 2. Движение электроннов

Для того чтоб лучше понять, что такое Электронный газ и как он ведет себя в химических реакциях разных металлов посмотрим интересное видео. (золото в этом видео упоминается исключительно как цвет!)

Теперь мы можем записать определение: металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

Давайте сравним все виды связей которые мы знаем И закрепим, чтобы лучше различать их, для этого посмотрим видео.

Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях.
Металлическая связь имеет важное значение и обуславливает основные свойства металлов
- электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al.
- пластичность
Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu.
- металлический блеск
Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, Hg

Домашнее задание

Упражнение 1
Выбрать формулы веществ которые имеют
а) ковалентную полярную связь: Cl2, KCl, NH3, O2, MgO, CCl4, SO2;
б) с ионную связь: HCl, KBr, P4, H2S, Na2O, CO2, CaS.
Упражнение 2
Вычеркните лишнее:
а) CuCl2, Al, MgS
б) N2, HCl, O2
в) Ca, CO2, Fe
г) MgCl2, NH3, H2

Металлический натрий , металлический литий, и остальные щелочные металлы меняют цвет пламени. Металлический литий и его соли придают огню --красный цвет, металлический натрий и соли натрия - жёлтый, металлический калий и его соли - фиолетовый, а рубидия и цезия - тоже фиолетовый, но более светлый.

Рис. 4. Кусок металического лития

Рис. 5. Окрашивание пламени металами

Литий (Li). Металлический литий, как и металлический натрий, относится к щелочным металлам. Оба растворяются в воде. Натрий, растворяясь в воде образует едкий натр –очень сильную кислоту. При растворении щелочных металов в воде выделяется много тепла и газа (водорода). Такие металы желательно не трогать руками, так как можно обжечся.

Список литературы

1. Урок по теме «Металлическая химическая связь», учителя химии Тухта Валентины Анатольевны МОУ "Есеновичская СОШ"
2. Ф. А. Деркач "Химия", - научно-методическое пособие. – Киев, 2008.
3. Л. Б. Цветкова «Неорганическая химия» – 2-е издание, исправленное и дополненное. – Львов, 2006.
4. В. В. Малиновский, П. Г. Нагорный «Неорганическая химия» - Киев, 2009.
5. Глинка Н.Л. Общая химия. – 27 изд./ Под. ред. В.А. Рабиновича. – Л.: Химия, 2008. – 704 с.ил.

Отредактировано и выслано Лисняк А.В.

Над уроком работали:

Тухта В.А.

Лисняк А.В.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Химия 8 класс