Детектор излучения. Простые индикаторы СВЧ поля своими руками Индикатор электромагнитных помех схема

Для сборки детектора электромагнитных волн своими руками позаимствуем схему из одного из радиолюбительских журналов. Радиолюбительская конструкция работает по принципу прямого усиления сигнала. Детекторные диоды VD1 и VD2 детектируют сигнала с внешней антенны. После этого сигнал идет на вход транзисторного усилителя, на VT1-VT3.

Из-за отсутствия элементов регулировки, устройство нельзя настроить на заданную частоту. Звуки с прибора можно слышать в узком диапазоне, который зависит от характеристик наушников и полосы пропускания транзисторного усилителя.

На выходе схемы детектора электромагнитного излучения подключают типовые головные телефоны, сопротивление которых 32 Ом. При этом излучатели телефонов подключают последовательно для получения суммарного сопротивления в 60 Ом.


Для детектирования сигнала подойдут абсолютно любые высокочастотные германиевые диоды малой мощности. Можно использовать типовые советские компоненты типа Д9, Д18, Д20 и Д311. В данной конструкции я взял диод ГД507. Транзисторы можно взять как наши, так и зарубежные. Хорошо себя показали широко распространенные биполярные транзисторы типа КТ 3102, но если их нет можно взять их импортный аналог типа BC547. В роли антенны отлично подойдет телескопическая трубка длинной около 30 см или даже отрезок жесткого провода. Питается схема от одной батарейки стандарта АА с напряжением 1,5 В.

Печатная плата детектора электромагнитного излучения приведена на рисунке ниже:


С помощью этого прибора можно изучать окружающее пространство и фиксировать электромагнитные сигналы низкочастотного диапазона. Например от кабеля проводного радио с расстояния в один метр можно услышать трансляцию радиосети. Провод бытовой сети переменного тока фиксируется по характерному низкому гулу. Особым звучанием обладают импульсные блоки питания.

На практике можно использовать этот прибор при поиске скрытой проводки и различных источников электромагнитных помех.

Схема детектора электромагнитного излучения на базе Arduino показана на рисунке ниже, как видите она очень проста и легко может быть повторена даже начинающим радиолюбителем и ардуинщиком.


Устройство, кроме Arduino Uno состоит из входной и выходной цепи. Входная цепь, используется в детекторе для регистрации электромагнитного излучения, и состоит из емкости и двух диодов. Номинал конденсатора в данном примере - 1.5 нФ. В роли диодов здесь применяются радио компоненты типа 1N4148. Сигнал входной части схемы детектора электромагнитных волн следует на аналоговый вход A0 платы Ардуино. Выходная часть схемы детектора нужна для определения уровня электромагнитного излучения и представляет собой типовой индикатор на светодиодах. Эта часть схемы состоит из десяти светодиодов и десяти подключенным к ним токоограничительных сопротивлений номиналом 470 Ом. Светодиоды с резисторами подсоединяются к цифровым портам платы D2-D11.

Вокруг нас постоянно находится электромагнитное излучение, но человеческому слуху оно недоступно. Если вы хотите услышать электромагнитное излучение, то можно воспользоваться специальным прибором, который мы изготовим собственными руками.

Для изготовления детектора электромагнитного излучения нам потребуется:
- старый кассетный плеер;
- клей;


Кассетный плеер нужно разобрать и достать оттуда плату из самого корпуса. Рекомендуется ознакомиться с платой не только для саморазвития, но и для того, что бы при сборке и разборке этого девайса не сломать никакие детали. Эта часть очень чувствительна к электромагнитным волнам.


Самая важная деталь на плате – это считывающая головка, она в последующем нам пригодится.


Возле считывающей головки есть два проводка, которые закреплены болтиками. Эти болтики нужно будет открутить. После того, как болтики открутим, должна остаться считывающая головка, которая будет болтаться на шлейфе. С ней нужно быть предельно аккуратно, чтобы ее не оторвать.



Если в плеере нет внешнего динамика, то в специальный разъем присоединяем обычные наушники, которые помогут нам услышать электромагнитные волны.


Теперь мы прислоняем считывающую головку к телевизору. Мы можем услышать электромагнитное излучение. Излучение можно услышать на расстоянии до 40 см, чем дальше мы отходим, тем хуже будет слышен звук. Важно отметить, что сильно излучение нам дает старый телевизор (кубик).

Если присоединить наше устройство к телевизорам нового поколения (жидкокристаллический), то мы тоже услышим помехи, но уже не такие сильные.
Большим удивлением стал тот факт, что даже пульт для телевизора излучает электромагнитное излучение.

Не секрет, что излучение идет и от телефона. При проверке звук был похож на тот, когда вы звоните и у вас включены колонки. Излучение идет абсолютно от любого телефона, даже от самого крутого и навороченного, при этом не обязательно набирать номер, можно залезть в интернет.

Электромагнитное излучение выделяют даже обычные зарядки от телефона и ручка двери.

С помощью обычного плеера можно услышать излучения, которое не слышно ушами и не видно глазами.

Предлагаю рассмотреть простую и легкую в изготовлении схему "детектора жучков" (любого источника электромагнитного поля). Которую я собрал, считаю что ничего сложного он не представляет и доступно даже начинающему радиолюбителю. Легко и просто.

В качестве дросселя L1 и L2 использованы ДПМ-1 на 200мкГн. Кондесатор С1 68 нФ, можно заменить на подстроечный конденсатор. ГД507А - высокочастотный диод с максимальной частой до 900 МГц. Для измерения более высоких частот - необходимо использовать СВЧ-диоды

Индикатор представляет собой панель из фольганированного текстолита размерами 24x5см. Схема не требует именно такого конструктивного решения - возможно использвать антенны "УСЫ" и пр. Размер антенны зависит от длины замеряемой волны.

Измерения проводились мультиметром М300 в режиме милливольтметра. Основное преимущество - широкий диапазон измерении. Начиная с 0 до 5В.

В основном измерения не выходят за 200-300 мВ. На фото произведено измерения БП (от точки доступа Wi-Fi) - напряжение 1,1В. Максимально зафиксированное значение очень большое - 4,5В, магнитное поле достаточно высокое, но из-за низкой частоты поля в 15-20 см от устройства значение близко к 0.

Поиск устройств излучающих высокочастотное излучение к примеру подслушивающих устройств (жучки, микрофоны) достаточно прост. Индикатор легко и уверенно определяет направление с которого идет излучение. Источник обнаруживается с расстояния 3-5м, даже это если обычный сотовый телефон. Увеличение показания прибора говорит о верности направления поиска. Чаще на верхних этажах дома в квартире присутвует электромагнитный "фон". Такая напряженность электромагнитного поля видимо обусловено мощными источниками излучения в радиусе нескольких сотен метров: базы сотовых операторов.

Индикатор не имеет своего усилителя, поэтому результат зависит от того какая конструкция антенны была выбрана. Конденсатор С1 - реактивное сопративление, который "режет" частоты и позволяет настроить индикатор на определенный диапазон. Точная настройка не производилось из-за отсуствия эталлоного генератора частоты, хорошего частометра.

Произведено лужение припоем. Это совсем не обязательно. В принципе после травления платы требуется тщательная промывка и просушка.

В качестве аналога который может быть использован вместо диода D1 ГД507А, рекомендую использовать КД922Б с максимальной частотой 1ГГц. По характеристикам при средних частотах до 400МГц, КД922Б превосходит германиевый аналог в два раза. Также при тестовых иземерниях с радиостанции 150МГц мощностью 5Вт, было получено 4.5В пикового напряжения с ГД507А, а с помощью КД922Б получена мощность в 3 раза выше.

При измерениях более низких частот (27МГц) существенных различий между диодами не наблюдается. Индикатор хорошо подходит для налаживания передающей аппаратуры, высокочастотных генераторов. Индикатор не позволяет определить частоту, искажения или возникающие гармоники передатчика, но думаю ничего не мешает доработать схему, усилить сигнал - подключить приемник и осциллограф.

Схемы самодельных устройств охраны и защиты информации

Как известно все устройства хищения информации, радиожучки да и просто телефоны работают посредством передачи на радиочастотах и, следовательно, создают вокруг себя магнитное поле.
Именно по наличию электромагнитного излучения и можно обнаружить такое устройство и предотвратить дальнейшие последствия от его применения.
Схема устройства, позволяющее определить наличие электромагнитного поля, приводится на рисунке.
Прибор удобно использовать для контроля за работой и настройки маломощных передающих устройств, работающих в широком диапазоне частот. Рабочая частота составляет 20-1300 МГц, чувствительность - 1 мВ, пределы локализации лежат в пределах 0,05-7 м. Напряжение питания 4,5-9 В, а ток потребления не превышает 8 мА. Прибор имеет телескопическую антенну.

Схема индикатора электромагнитного поля

Это устройство предназначено для локального поиска радиозакладок . Его отличительными особенностями являются:

  • простота повторения;
  • надежность;
  • малые габариты.

Примечание. И этот прибор имеет недостаток - немного реагирует на посторонние излучения радиоэфира от теле-радиопередающих станций, радиотелефонов. Но этот недостаток с лихвой компенсируется простотой и дешевизной индикатора.

Входной сигнал, наведенный телескопической антенной, поступает на входной усилитель ВЧ, построенный на транзисторе VT1, и далее, через фильтр Cl, L1, СЗ на детектор-компаратор DA1.

Порог включения компаратора устанавливается резистором R5. Сигнал компаратора с выхода 6 через инвертор DD1.3 и ключ VT2 управляет генератором прямоугольных импульсов на элементах DD1.4, DD1.5 с частотой 1 Гц, который, в свою очередь, включает генератор звуковой частоты на DD1.1, DD1.2.

Светодиод VD1 - двухцветный:

  • VD1.1 сигнализирует о включении питания зеленым светом;
  • VD2.2 сигнализирует об обнаружении источника радиоизлучений красным светом.

Настройка прибора заключается в выборе ОУ DA1 с возможно большим коэффициентом усиления.

Примечание. Расстояние, на котором индикатор должен устойчиво реагировать, имея антенну длиной 30 см, на радиопередатчик мощностью 1 мВт, должно быть не менее 50 см.

Транзистор КТ3101 можно заменить на КТ371, КТ368 с коэффициентом усиления не менее 150. Операционный усилитель - К140УД608, К140УД708.

Светодиод AЛC331 можно заменить обычными, типа AЛ307, включив их вместо VD1.1 и VD1.2. Катушка индуктивности имеет 19 витков, намотанных в ряд на любом резисторе MЛT 0,125, проводом ПЭЛ-0,1.

Я был сильно удивлён, когда мой простенький самодельный детектор-индикатор, зашкалил рядомс работающей СВЧ печкой в нашей рабочей столовой. Она же вся экранирована, может неисправность какая? Решил проверить свою, новую печь, ей практически не пользовались. Индикатор тоже отклонился на всю шкалу!


Такой простенький индикатор я собираю за короткое время каждый раз, когда выезжаю на полевые испытания приемно-передающей аппаратуры. Очень помогает в работе, не надо таскать за собой массу приборов, простой самоделкой работоспособность передатчика всегда легко проверить, (где антенный разъём не до конца довернули, или питание забыли включить). Заказчикам такой стиль ретро-индикатора очень нравится, приходится оставлять в подарок.

Достоинство – это простота конструкции и отсутствие питания. Вечный прибор.

Делается легко, намного проще, чем точно такой же « » средневолнового диапазона. Вместо сетевого удлинителя (катушки индуктивности) – кусок медного провода, по аналогии можно несколько проводов параллельно, хуже не будет. Сам провод в виде окружности длиной 17 см, толщинойне менее 0,5 мм (для большей гибкости использую три таких провода) является как колебательным контуром внизу, так и рамочной антенной верхней части диапазона, который составляет от 900 до 2450 МГц (выше не проверял работоспособность). Можно применить более сложную направленную антенну и согласование с входом, но такое отступление не будет соответствовать названию темы. Переменный, построечныйили просто конденсатор (он же тазик) не нужен, на СВЧ – два соединения рядом, уже конденсатор.

Германиевый диод искать не надо, его заменит PIN диод HSMP : 3880, 3802, 3810, 3812 и т.д., или HSHS 2812, (я его использовал). Хотите продвинуться выше частоты СВЧ печки (2450 МГц), выбирайте диоды с меньшей ёмкостью (0,2 пФ), возможно подойдут диоды HSMP -3860 – 3864. При монтаже не перегрейте. Паять надо точечно-быстро, за 1 сек.

Вместо высокоомных наушников - стрелочный индикатор.Магнитоэлектрическая система имеет преимущество - инерционность. Помогает плавно двигаться стрелке конденсатор фильтра (0,1 мкФ). Чем выше сопротивление индикатора, тем чувствительнее измеритель поля (сопротивления моих индикаторов составляет от 0,5 до 1,75 кОм). Заложенная в отклоняющейся или подёргивающейся стрелке информация действует на присутствующих магически.

Такой индикатор поля, установленный рядом с головой разговаривающей по мобильному телефону, сначала вызовет на лице изумление, возможно, вернёт человека к действительности, спасёт от возможных заболеваний.

Если есть ещё силы и здоровье обязательно ткните мышкой в одну из этих статей.

Вместо стрелочного прибора можно использовать тестер, который будет измерять постоянное напряжение на самом чувствительном пределе.

Схема индикатора СВЧ со светодиодом.
Индикатор СВЧ со светодиодом.

Попробовал в качестве индикатора светодиод . Такую конструкцию можно оформить в виде брелка, используя плоскую 3-х вольтовою батарейку, или вставить в пустой корпус мобильного телефона. Дежурный ток устройства 0,25 мА, рабочий ток напрямую зависит от яркости светодиода и составит около 5 мА. Напряжение, выпрямленное диодом, усиливается операционным усилителем, накапливается на конденсаторе и открывает ключевое устройство на транзисторе, который включает светодиод.

Если стрелочный индикатор без батарейки отклонялся в радиусе 0,5 - 1 метра, то цветомузыка на диоде отодвинулась до 5 метров, как от сотового телефона, так и от СВЧ печки. Насчёт цветомузыки не ошибся, сами убедитесь, что максимальная мощность будет только при разговоре по мобильному телефону и при постороннем громком шуме.

Регулировка.


Я собирал несколько таких индикаторов, и заработали они сразу. Но всё же нюансы бывают. Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Для удобства пользования можно ухудшить чувствительность, уменьшив резистор 1мОм, или уменьшить длину витка провода. С приведёнными номиналами поля СВЧ базовых телефонных станций чувствует в радиусе 50 – 100 м.
С таким индикатором можно составить экологическую карту своего района и выделить места, где нельзя зависать с колясками или долго засиживаться с детьми.

Находиться под антеннами базовых станций
безопаснее, чем в радиусе 10 - 100 метров от них.

Благодаря этому прибору я пришёл к выводу,какие мобильные телефоны лучше, то есть имеют меньшее излучение. Поскольку это не реклама, то скажу сугубо конфиденциально, шёпотом. Лучшие телефоны – это современные, с выходом в Интернет, чем дороже, тем лучше.

Аналоговый индикатор уровня.

Я решил попробовать чуть усложнить индикатор СВЧ, для чего добавил в него аналоговый измеритель уровня. Для удобства использовал ту же элементную базу. На схеме три операционных усилителя постоянного тока с разным коэффициентом усиления. В макете я остановился на 3-х каскадах, хотя запланировать можно и 4-е, используя микросхему LMV 824 (4-е ОУ в одном корпусе). Применив питание от 3, (3,7 телефонный аккумулятор) и 4,5 вольта пришёл к выводу, что можно обойтись без ключевого каскада на транзисторе. Таким образом, получилась одна микросхема, свч диод и 4-е светодиода. Учитывая условия сильных электромагнитных полей, в которых будет работать индикатор, использовал по всем входам, по цепям обратной связи и по питанию ОУ блокировочные и фильтрующие конденсаторы.
Регулировка.
Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Данный макет уже прошёл испытания.

Интервал от 3-х горящих светодиодов до полностью потушенных составляет около 20 дБ.

Питание от 3-х до 4,5 вольт. Дежурный ток от 0,65 до 0,75 мА. Рабочий ток при загорании 1-го светодиода составляет от 3 до 5 мА.

Этот индикатор СВЧ поля на микросхеме с 4-я ОУ собрал Николай.
Вот его схема.


Размеры и маркировка выводов микросхемы LMV824.


Монтаж индикатора СВЧ
на микросхеме LMV824.

Аналогичная по параметрам микросхема MC 33174D , включающая в себя четыре операционных усилителя, выполненная в дип-корпусе имеет больший размер, а поэтому более удобна для радиолюбительского монтажа. Электрическая конфигурация выводов полностью совпадает с микросхемой L МV 824. На микросхеме MC 33174D я сделал макет СВЧ индикатора на четыре светодиода. Между выводами 6 и 7 микросхемы добавлен резистор 9,1 кОм и параллельно ему конденсатор 0,1 мкФ. Седьмой вывод микросхемы, через резистор 680 Ом соединяется с 4-м светодиодом. Типоразмер деталей 06 03. Питание макета от литиевого элемента 3,3 – 4,2 вольта.

Индикатор на микросхеме МС33174.
Оборотная сторона.

Оригинальную конструкцию экономичного индикатора поля имеет сувенир сделанный в Китае. В этой недорогой игрушке есть: радиоприёмник, часы с датой, градусник и, наконец, индикатор поля. Бескорпусная, залитая микросхема потребляет ничтожно мало энергии, поскольку работает в режиме таймирования, на включение мобильного телефона реагирует с расстояния 1 метра, имитируя несколько секунд светодиодной индикацией аварийную сигнализацию передними фарами. Такие схемы выполняются на программируемых микропроцессорах с минимальным количеством деталей.

Дополнение к комментариям.

Селективные измерители поля для любительского диапазона 430 - 440 МГц
и для диапазона PMR (446 МГц).

Индикаторы СВЧ полей для любительских диапазонов от 430 до 446 МГц можно сделать селективными, добавив дополнительный контур L к Ск, где L к представляет собой виток провода диаметром 0,5 мм и длиной 3 см, а Ск - подстроечный конденсатор с номиналом 2 – 6 пФ. Сам виток провода, как вариант, можно изготовить в виде 3-х витковой катушки, с шагом намотанной на оправке диаметром 2 мм тем же проводом. К контуру необходимо подсоединить антенну в виде отрезка провода длиной 17 см через конденсатор связи 3.3 пФ.


Диапазон 430 - 446 МГц. Вместо витка катушка с шаговой намоткой.

Схема на диапазоны
430 - 446 МГц.

Монтаж на частотный диапазон
430 - 446 МГц.

Кстати, если серьёзно заниматься СВЧ измерением отдельных частот, то можно вместо контура использовать селективные фильтры на ПАВ-ах. В столичных радиомагазинах их ассортимент в настоящее время более чем достаточен. В схему необходимо будет добавить ВЧ трансформатор после фильтра.

Но это уже другая тема, не отвечающая названию поста.